Welcome to Subscribe On Youtube

2565. Subsequence With the Minimum Score

Description

You are given two strings s and t.

You are allowed to remove any number of characters from the string t.

The score of the string is 0 if no characters are removed from the string t, otherwise:

  • Let left be the minimum index among all removed characters.
  • Let right be the maximum index among all removed characters.

Then the score of the string is right - left + 1.

Return the minimum possible score to make t a subsequence of s.

A subsequence of a string is a new string that is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (i.e., "ace" is a subsequence of "abcde" while "aec" is not).

 

Example 1:

Input: s = "abacaba", t = "bzaa"
Output: 1
Explanation: In this example, we remove the character "z" at index 1 (0-indexed).
The string t becomes "baa" which is a subsequence of the string "abacaba" and the score is 1 - 1 + 1 = 1.
It can be proven that 1 is the minimum score that we can achieve.

Example 2:

Input: s = "cde", t = "xyz"
Output: 3
Explanation: In this example, we remove characters "x", "y" and "z" at indices 0, 1, and 2 (0-indexed).
The string t becomes "" which is a subsequence of the string "cde" and the score is 2 - 0 + 1 = 3.
It can be proven that 3 is the minimum score that we can achieve.

 

Constraints:

  • 1 <= s.length, t.length <= 105
  • s and t consist of only lowercase English letters.

Solutions

Solution 1: Prefix and Suffix Preprocessing + Binary Search

According to the problem, we know that the range of the index to delete characters is [left, right]. The optimal approach is to delete all characters within the range [left, right]. In other words, we need to delete a substring from string $t$, so that the remaining prefix of string $t$ can match the prefix of string $s$, and the remaining suffix of string $t$ can match the suffix of string $s$, and the prefix and suffix of string $s$ do not overlap. Note that the match here refers to subsequence matching.

Therefore, we can preprocess to get arrays $f$ and $g$, where $f[i]$ represents the minimum number of characters in the prefix $t[0,..i]$ of string $t$ that match the first $[0,..f[i]]$ characters of string $s$; similarly, $g[i]$ represents the maximum number of characters in the suffix $t[i,..n-1]$ of string $t$ that match the last $[g[i],..n-1]$ characters of string $s$.

The length of the deleted characters has monotonicity. If the condition is satisfied after deleting a string of length $x$, then the condition is definitely satisfied after deleting a string of length $x+1$. Therefore, we can use the method of binary search to find the smallest length that satisfies the condition.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Where $n$ is the length of string $t$.

  • class Solution {
        private int m;
        private int n;
        private int[] f;
        private int[] g;
    
        public int minimumScore(String s, String t) {
            m = s.length();
            n = t.length();
            f = new int[n];
            g = new int[n];
            for (int i = 0; i < n; ++i) {
                f[i] = 1 << 30;
                g[i] = -1;
            }
            for (int i = 0, j = 0; i < m && j < n; ++i) {
                if (s.charAt(i) == t.charAt(j)) {
                    f[j] = i;
                    ++j;
                }
            }
            for (int i = m - 1, j = n - 1; i >= 0 && j >= 0; --i) {
                if (s.charAt(i) == t.charAt(j)) {
                    g[j] = i;
                    --j;
                }
            }
            int l = 0, r = n;
            while (l < r) {
                int mid = (l + r) >> 1;
                if (check(mid)) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return l;
        }
    
        private boolean check(int len) {
            for (int k = 0; k < n; ++k) {
                int i = k - 1, j = k + len;
                int l = i >= 0 ? f[i] : -1;
                int r = j < n ? g[j] : m + 1;
                if (l < r) {
                    return true;
                }
            }
            return false;
        }
    }
    
  • class Solution {
    public:
        int minimumScore(string s, string t) {
            int m = s.size(), n = t.size();
            vector<int> f(n, 1e6);
            vector<int> g(n, -1);
            for (int i = 0, j = 0; i < m && j < n; ++i) {
                if (s[i] == t[j]) {
                    f[j] = i;
                    ++j;
                }
            }
            for (int i = m - 1, j = n - 1; i >= 0 && j >= 0; --i) {
                if (s[i] == t[j]) {
                    g[j] = i;
                    --j;
                }
            }
    
            auto check = [&](int len) {
                for (int k = 0; k < n; ++k) {
                    int i = k - 1, j = k + len;
                    int l = i >= 0 ? f[i] : -1;
                    int r = j < n ? g[j] : m + 1;
                    if (l < r) {
                        return true;
                    }
                }
                return false;
            };
    
            int l = 0, r = n;
            while (l < r) {
                int mid = (l + r) >> 1;
                if (check(mid)) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return l;
        }
    };
    
  • class Solution:
        def minimumScore(self, s: str, t: str) -> int:
            def check(x):
                for k in range(n):
                    i, j = k - 1, k + x
                    l = f[i] if i >= 0 else -1
                    r = g[j] if j < n else m + 1
                    if l < r:
                        return True
                return False
    
            m, n = len(s), len(t)
            f = [inf] * n
            g = [-1] * n
            i, j = 0, 0
            while i < m and j < n:
                if s[i] == t[j]:
                    f[j] = i
                    j += 1
                i += 1
            i, j = m - 1, n - 1
            while i >= 0 and j >= 0:
                if s[i] == t[j]:
                    g[j] = i
                    j -= 1
                i -= 1
    
            return bisect_left(range(n + 1), True, key=check)
    
    
  • func minimumScore(s string, t string) int {
    	m, n := len(s), len(t)
    	f := make([]int, n)
    	g := make([]int, n)
    	for i := range f {
    		f[i] = 1 << 30
    		g[i] = -1
    	}
    	for i, j := 0, 0; i < m && j < n; i++ {
    		if s[i] == t[j] {
    			f[j] = i
    			j++
    		}
    	}
    	for i, j := m-1, n-1; i >= 0 && j >= 0; i-- {
    		if s[i] == t[j] {
    			g[j] = i
    			j--
    		}
    	}
    	return sort.Search(n+1, func(x int) bool {
    		for k := 0; k < n; k++ {
    			i, j := k-1, k+x
    			l, r := -1, m+1
    			if i >= 0 {
    				l = f[i]
    			}
    			if j < n {
    				r = g[j]
    			}
    			if l < r {
    				return true
    			}
    		}
    		return false
    	})
    }
    

All Problems

All Solutions