Welcome to Subscribe On Youtube
2563. Count the Number of Fair Pairs
Description
Given a 0-indexed integer array nums
of size n
and two integers lower
and upper
, return the number of fair pairs.
A pair (i, j)
is fair if:
0 <= i < j < n
, andlower <= nums[i] + nums[j] <= upper
Example 1:
Input: nums = [0,1,7,4,4,5], lower = 3, upper = 6 Output: 6 Explanation: There are 6 fair pairs: (0,3), (0,4), (0,5), (1,3), (1,4), and (1,5).
Example 2:
Input: nums = [1,7,9,2,5], lower = 11, upper = 11 Output: 1 Explanation: There is a single fair pair: (2,3).
Constraints:
1 <= nums.length <= 105
nums.length == n
-109 <= nums[i] <= 109
-109 <= lower <= upper <= 109
Solutions
Solution 1: Sorting + Binary Search
First, we sort the array nums
in ascending order. Then, for each nums[i]
, we use binary search to find the lower bound j
of nums[j]
, i.e., the first index that satisfies nums[j] >= lower - nums[i]
. Then, we use binary search again to find the lower bound k
of nums[k]
, i.e., the first index that satisfies nums[k] >= upper - nums[i] + 1
. Therefore, [j, k)
is the index range for nums[j]
that satisfies lower <= nums[i] + nums[j] <= upper
. The count of these indices corresponding to nums[j]
is k - j
, and we can add this to the answer. Note that $j > i$.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Where $n$ is the length of the array nums
.
-
class Solution { public long countFairPairs(int[] nums, int lower, int upper) { Arrays.sort(nums); long ans = 0; int n = nums.length; for (int i = 0; i < n; ++i) { int j = search(nums, lower - nums[i], i + 1); int k = search(nums, upper - nums[i] + 1, i + 1); ans += k - j; } return ans; } private int search(int[] nums, int x, int left) { int right = nums.length; while (left < right) { int mid = (left + right) >> 1; if (nums[mid] >= x) { right = mid; } else { left = mid + 1; } } return left; } }
-
class Solution { public: long long countFairPairs(vector<int>& nums, int lower, int upper) { long long ans = 0; sort(nums.begin(), nums.end()); for (int i = 0; i < nums.size(); ++i) { auto j = lower_bound(nums.begin() + i + 1, nums.end(), lower - nums[i]); auto k = lower_bound(nums.begin() + i + 1, nums.end(), upper - nums[i] + 1); ans += k - j; } return ans; } };
-
class Solution: def countFairPairs(self, nums: List[int], lower: int, upper: int) -> int: nums.sort() ans = 0 for i, x in enumerate(nums): j = bisect_left(nums, lower - x, lo=i + 1) k = bisect_left(nums, upper - x + 1, lo=i + 1) ans += k - j return ans
-
func countFairPairs(nums []int, lower int, upper int) (ans int64) { sort.Ints(nums) for i, x := range nums { j := sort.Search(len(nums), func(h int) bool { return h > i && nums[h] >= lower-x }) k := sort.Search(len(nums), func(h int) bool { return h > i && nums[h] >= upper-x+1 }) ans += int64(k - j) } return }
-
function countFairPairs(nums: number[], lower: number, upper: number): number { const search = (x: number, l: number): number => { let r = nums.length; while (l < r) { const mid = (l + r) >> 1; if (nums[mid] >= x) { r = mid; } else { l = mid + 1; } } return l; }; nums.sort((a, b) => a - b); let ans = 0; for (let i = 0; i < nums.length; ++i) { const j = search(lower - nums[i], i + 1); const k = search(upper - nums[i] + 1, i + 1); ans += k - j; } return ans; }