Welcome to Subscribe On Youtube

2488. Count Subarrays With Median K

Description

You are given an array nums of size n consisting of distinct integers from 1 to n and a positive integer k.

Return the number of non-empty subarrays in nums that have a median equal to k.

Note:

  • The median of an array is the middle element after sorting the array in ascending order. If the array is of even length, the median is the left middle element.
    • For example, the median of [2,3,1,4] is 2, and the median of [8,4,3,5,1] is 4.
  • A subarray is a contiguous part of an array.

 

Example 1:

Input: nums = [3,2,1,4,5], k = 4
Output: 3
Explanation: The subarrays that have a median equal to 4 are: [4], [4,5] and [1,4,5].

Example 2:

Input: nums = [2,3,1], k = 3
Output: 1
Explanation: [3] is the only subarray that has a median equal to 3.

 

Constraints:

  • n == nums.length
  • 1 <= n <= 105
  • 1 <= nums[i], k <= n
  • The integers in nums are distinct.

Solutions

  • class Solution {
        public int countSubarrays(int[] nums, int k) {
            int n = nums.length;
            int i = 0;
            for (; nums[i] != k; ++i) {
            }
            int[] cnt = new int[n << 1 | 1];
            int ans = 1;
            int x = 0;
            for (int j = i + 1; j < n; ++j) {
                x += nums[j] > k ? 1 : -1;
                if (x >= 0 && x <= 1) {
                    ++ans;
                }
                ++cnt[x + n];
            }
            x = 0;
            for (int j = i - 1; j >= 0; --j) {
                x += nums[j] > k ? 1 : -1;
                if (x >= 0 && x <= 1) {
                    ++ans;
                }
                ans += cnt[-x + n] + cnt[-x + 1 + n];
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int countSubarrays(vector<int>& nums, int k) {
            int n = nums.size();
            int i = find(nums.begin(), nums.end(), k) - nums.begin();
            int cnt[n << 1 | 1];
            memset(cnt, 0, sizeof(cnt));
            int ans = 1;
            int x = 0;
            for (int j = i + 1; j < n; ++j) {
                x += nums[j] > k ? 1 : -1;
                if (x >= 0 && x <= 1) {
                    ++ans;
                }
                ++cnt[x + n];
            }
            x = 0;
            for (int j = i - 1; ~j; --j) {
                x += nums[j] > k ? 1 : -1;
                if (x >= 0 && x <= 1) {
                    ++ans;
                }
                ans += cnt[-x + n] + cnt[-x + 1 + n];
            }
            return ans;
        }
    };
    
  • class Solution:
        def countSubarrays(self, nums: List[int], k: int) -> int:
            i = nums.index(k)
            cnt = Counter()
            ans = 1
            x = 0
            for v in nums[i + 1 :]:
                x += 1 if v > k else -1
                ans += 0 <= x <= 1
                cnt[x] += 1
            x = 0
            for j in range(i - 1, -1, -1):
                x += 1 if nums[j] > k else -1
                ans += 0 <= x <= 1
                ans += cnt[-x] + cnt[-x + 1]
            return ans
    
    
  • func countSubarrays(nums []int, k int) int {
    	i, n := 0, len(nums)
    	for nums[i] != k {
    		i++
    	}
    	ans := 1
    	cnt := make([]int, n<<1|1)
    	x := 0
    	for j := i + 1; j < n; j++ {
    		if nums[j] > k {
    			x++
    		} else {
    			x--
    		}
    		if x >= 0 && x <= 1 {
    			ans++
    		}
    		cnt[x+n]++
    	}
    	x = 0
    	for j := i - 1; j >= 0; j-- {
    		if nums[j] > k {
    			x++
    		} else {
    			x--
    		}
    		if x >= 0 && x <= 1 {
    			ans++
    		}
    		ans += cnt[-x+n] + cnt[-x+1+n]
    	}
    	return ans
    }
    
  • function countSubarrays(nums: number[], k: number): number {
        const i = nums.indexOf(k);
        const n = nums.length;
        const cnt = new Array((n << 1) | 1).fill(0);
        let ans = 1;
        let x = 0;
        for (let j = i + 1; j < n; ++j) {
            x += nums[j] > k ? 1 : -1;
            ans += x >= 0 && x <= 1 ? 1 : 0;
            ++cnt[x + n];
        }
        x = 0;
        for (let j = i - 1; ~j; --j) {
            x += nums[j] > k ? 1 : -1;
            ans += x >= 0 && x <= 1 ? 1 : 0;
            ans += cnt[-x + n] + cnt[-x + 1 + n];
        }
        return ans;
    }
    
    

All Problems

All Solutions