Welcome to Subscribe On Youtube

2475. Number of Unequal Triplets in Array

Description

You are given a 0-indexed array of positive integers nums. Find the number of triplets (i, j, k) that meet the following conditions:

  • 0 <= i < j < k < nums.length
  • nums[i], nums[j], and nums[k] are pairwise distinct.
    • In other words, nums[i] != nums[j], nums[i] != nums[k], and nums[j] != nums[k].

Return the number of triplets that meet the conditions.

 

Example 1:

Input: nums = [4,4,2,4,3]
Output: 3
Explanation: The following triplets meet the conditions:
- (0, 2, 4) because 4 != 2 != 3
- (1, 2, 4) because 4 != 2 != 3
- (2, 3, 4) because 2 != 4 != 3
Since there are 3 triplets, we return 3.
Note that (2, 0, 4) is not a valid triplet because 2 > 0.

Example 2:

Input: nums = [1,1,1,1,1]
Output: 0
Explanation: No triplets meet the conditions so we return 0.

 

Constraints:

  • 3 <= nums.length <= 100
  • 1 <= nums[i] <= 1000

Solutions

Solution 1: Brute Force Enumeration

We can directly enumerate all triples $(i, j, k)$ and count all the ones that meet the conditions.

The time complexity is $O(n^3)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.

Solution 2: Sorting + Enumeration of Middle Elements + Binary Search

We can also sort the array $nums$ first.

Then traverse $nums$, enumerate the middle element $nums[j]$, and use binary search to find the nearest index $i$ on the left side of $nums[j]$ such that $nums[i] < nums[j]$; find the nearest index $k$ on the right side of $nums[j]$ such that $nums[k] > nums[j]$. Then the number of triples with $nums[j]$ as the middle element and meeting the conditions is $(i + 1) \times (n - k)$, which is added to the answer.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array $nums$.

Solution 3: Hash Table

We can also use a hash table $cnt$ to count the number of each element in the array $nums$.

Then traverse the hash table $cnt$, enumerate the number of middle elements $b$, and denote the number of elements on the left as $a$. Then the number of elements on the right is $c = n - a - b$. At this time, the number of triples that meet the conditions is $a \times b \times c$, which is added to the answer. Then update $a = a + b$ and continue to enumerate the number of middle elements $b$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.

  • class Solution {
        public int unequalTriplets(int[] nums) {
            int n = nums.length;
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                for (int j = i + 1; j < n; ++j) {
                    for (int k = j + 1; k < n; ++k) {
                        if (nums[i] != nums[j] && nums[j] != nums[k] && nums[i] != nums[k]) {
                            ++ans;
                        }
                    }
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int unequalTriplets(vector<int>& nums) {
            int n = nums.size();
            int ans = 0;
            for (int i = 0; i < n; ++i) {
                for (int j = i + 1; j < n; ++j) {
                    for (int k = j + 1; k < n; ++k) {
                        if (nums[i] != nums[j] && nums[j] != nums[k] && nums[i] != nums[k]) {
                            ++ans;
                        }
                    }
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def unequalTriplets(self, nums: List[int]) -> int:
            n = len(nums)
            ans = 0
            for i in range(n):
                for j in range(i + 1, n):
                    for k in range(j + 1, n):
                        ans += (
                            nums[i] != nums[j] and nums[j] != nums[k] and nums[i] != nums[k]
                        )
            return ans
    
    
  • func unequalTriplets(nums []int) (ans int) {
    	n := len(nums)
    	for i := 0; i < n; i++ {
    		for j := i + 1; j < n; j++ {
    			for k := j + 1; k < n; k++ {
    				if nums[i] != nums[j] && nums[j] != nums[k] && nums[i] != nums[k] {
    					ans++
    				}
    			}
    		}
    	}
    	return
    }
    
  • function unequalTriplets(nums: number[]): number {
        const n = nums.length;
        let ans = 0;
        for (let i = 0; i < n - 2; i++) {
            for (let j = i + 1; j < n - 1; j++) {
                for (let k = j + 1; k < n; k++) {
                    if (nums[i] !== nums[j] && nums[j] !== nums[k] && nums[i] !== nums[k]) {
                        ans++;
                    }
                }
            }
        }
        return ans;
    }
    
    
  • impl Solution {
        pub fn unequal_triplets(nums: Vec<i32>) -> i32 {
            let n = nums.len();
            let mut ans = 0;
            for i in 0..n - 2 {
                for j in i + 1..n - 1 {
                    for k in j + 1..n {
                        if nums[i] != nums[j] && nums[j] != nums[k] && nums[i] != nums[k] {
                            ans += 1;
                        }
                    }
                }
            }
            ans
        }
    }
    
    

All Problems

All Solutions