Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2304.html

2304. Minimum Path Cost in a Grid

  • Difficulty: Medium.
  • Related Topics: Array, Dynamic Programming, Matrix.
  • Similar Questions: Unique Paths, Unique Paths II, Minimum Path Sum, Dungeon Game, Paint House.

Problem

You are given a 0-indexed m x n integer matrix grid consisting of distinct integers from 0 to m * n - 1. You can move in this matrix from a cell to any other cell in the next row. That is, if you are in cell (x, y) such that x < m - 1, you can move to any of the cells (x + 1, 0), (x + 1, 1), …, (x + 1, n - 1). Note that it is not possible to move from cells in the last row.

Each possible move has a cost given by a 0-indexed 2D array moveCost of size (m * n) x n, where moveCost[i][j] is the cost of moving from a cell with value i to a cell in column j of the next row. The cost of moving from cells in the last row of grid can be ignored.

The cost of a path in grid is the sum of all values of cells visited plus the sum of costs of all the moves made. Return the **minimum cost of a path that starts from any cell in the first row and ends at any cell in the last row.**

  Example 1:

Input: grid = [[5,3],[4,0],[2,1]], moveCost = [[9,8],[1,5],[10,12],[18,6],[2,4],[14,3]]
Output: 17
Explanation: The path with the minimum possible cost is the path 5 -> 0 -> 1.
- The sum of the values of cells visited is 5 + 0 + 1 = 6.
- The cost of moving from 5 to 0 is 3.
- The cost of moving from 0 to 1 is 8.
So the total cost of the path is 6 + 3 + 8 = 17.

Example 2:

Input: grid = [[5,1,2],[4,0,3]], moveCost = [[12,10,15],[20,23,8],[21,7,1],[8,1,13],[9,10,25],[5,3,2]]
Output: 6
Explanation: The path with the minimum possible cost is the path 2 -> 3.
- The sum of the values of cells visited is 2 + 3 = 5.
- The cost of moving from 2 to 3 is 1.
So the total cost of this path is 5 + 1 = 6.

  Constraints:

  • m == grid.length

  • n == grid[i].length

  • 2 <= m, n <= 50

  • grid consists of distinct integers from 0 to m * n - 1.

  • moveCost.length == m * n

  • moveCost[i].length == n

  • 1 <= moveCost[i][j] <= 100

Solution (Java, C++, Python)

  • class Solution {
        public int minPathCost(int[][] grid, int[][] moveCost) {
            int m = grid.length;
            int n = grid[0].length;
            int[][] dp = new int[m][n];
            System.arraycopy(grid[m - 1], 0, dp[m - 1], 0, n);
            for (int i = m - 2; i >= 0; i--) {
                for (int j = 0; j < n; j++) {
                    int min = Integer.MAX_VALUE;
                    for (int k = 0; k < n; k++) {
                        min = Math.min(min, grid[i][j] + moveCost[grid[i][j]][k] + dp[i + 1][k]);
                    }
                    dp[i][j] = min;
                }
            }
            int min = Integer.MAX_VALUE;
            for (int s : dp[0]) {
                min = Math.min(min, s);
            }
            return min;
        }
    }
    
    ############
    
    class Solution {
        public int minPathCost(int[][] grid, int[][] moveCost) {
            int m = grid.length, n = grid[0].length;
            int[] f = grid[0];
            final int inf = 1 << 30;
            for (int i = 1; i < m; ++i) {
                int[] g = new int[n];
                Arrays.fill(g, inf);
                for (int j = 0; j < n; ++j) {
                    for (int k = 0; k < n; ++k) {
                        g[j] = Math.min(g[j], f[k] + moveCost[grid[i - 1][k]][j] + grid[i][j]);
                    }
                }
                f = g;
            }
    
            // return Arrays.stream(f).min().getAsInt();
            int ans = inf;
            for (int v : f) {
                ans = Math.min(ans, v);
            }
            return ans;
        }
    }
    
  • class Solution:
        def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
            m, n = len(grid), len(grid[0])
            f = grid[0]
            for i in range(1, m):
                g = [inf] * n
                for j in range(n):
                    for k in range(n):
                        g[j] = min(g[j], f[k] + moveCost[grid[i - 1][k]][j] + grid[i][j])
                f = g
            return min(f)
    
    ############
    
    # 2304. Minimum Path Cost in a Grid
    # https://leetcode.com/problems/minimum-path-cost-in-a-grid/
    
    class Solution:
        def minPathCost(self, grid: List[List[int]], moveCost: List[List[int]]) -> int:
            rows, cols = len(grid), len(grid[0])
            path = []
            res = float('inf')
    
            @cache
            def go(i, j):
                if i == rows - 1:
                    return grid[i][j]
                
                res = float('inf')
    
                for k, cost in enumerate(moveCost[grid[i][j]]):
                    res = min(res, go(i + 1, k) + cost + grid[i][j])
                    
                return res
                    
            
            for j in range(cols):
                res = min(res, go(0, j))
            
            return res
            
    
    
  • class Solution {
    public:
        int minPathCost(vector<vector<int>>& grid, vector<vector<int>>& moveCost) {
            int m = grid.size(), n = grid[0].size();
            const int inf = 1 << 30;
            vector<int> f = grid[0];
            for (int i = 1; i < m; ++i) {
                vector<int> g(n, inf);
                for (int j = 0; j < n; ++j) {
                    for (int k = 0; k < n; ++k) {
                        g[j] = min(g[j], f[k] + moveCost[grid[i - 1][k]][j] + grid[i][j]);
                    }
                }
                f = move(g);
            }
            return *min_element(f.begin(), f.end());
        }
    };
    
  • func minPathCost(grid [][]int, moveCost [][]int) int {
    	m, n := len(grid), len(grid[0])
    	const inf = 1 << 30
    	f := grid[0]
    	for i := 1; i < m; i++ {
    		g := make([]int, n)
    		for j := 0; j < n; j++ {
    			g[j] = inf
    			for k := 0; k < n; k++ {
    				g[j] = min(g[j], f[k]+moveCost[grid[i-1][k]][j]+grid[i][j])
    			}
    		}
    		f = g
    	}
    	ans := inf
    	for _, v := range f {
    		ans = min(ans, v)
    	}
    	return ans
    }
    
    func min(a, b int) int {
    	if a < b {
    		return a
    	}
    	return b
    }
    
  • function minPathCost(grid: number[][], moveCost: number[][]): number {
        const m = grid.length,
            n = grid[0].length;
        let pre = grid[0].slice();
        for (let i = 1; i < m; i++) {
            let next = new Array(n);
            for (let j = 0; j < n; j++) {
                const key = grid[i - 1][j];
                for (let k = 0; k < n; k++) {
                    let sum = pre[j] + moveCost[key][k] + grid[i][k];
                    if (j == 0 || next[k] > sum) {
                        next[k] = sum;
                    }
                }
            }
            pre = next;
        }
        return Math.min(...pre);
    }
    
    
  • impl Solution {
        pub fn min_path_cost(grid: Vec<Vec<i32>>, move_cost: Vec<Vec<i32>>) -> i32 {
            let (m, n) = (grid.len(), grid[0].len());
            let mut dp = vec![0; n];
            for i in 0..m - 1 {
                let mut counter = vec![i32::MAX; n];
                for j in 0..n {
                    let val = grid[i][j];
                    for k in 0..n {
                        counter[k] = counter[k].min(val + move_cost[val as usize][k] + dp[j]);
                    }
                }
                for j in 0..n {
                    dp[j] = counter[j];
                }
            }
            let mut res = i32::MAX;
            for i in 0..n {
                res = res.min(dp[i] + grid[m - 1][i]);
            }
            res
        }
    }
    
    

Explain:

nope.

Complexity:

  • Time complexity : O(n).
  • Space complexity : O(n).

All Problems

All Solutions