Welcome to Subscribe On Youtube

2414. Length of the Longest Alphabetical Continuous Substring

Description

An alphabetical continuous string is a string consisting of consecutive letters in the alphabet. In other words, it is any substring of the string "abcdefghijklmnopqrstuvwxyz".

  • For example, "abc" is an alphabetical continuous string, while "acb" and "za" are not.

Given a string s consisting of lowercase letters only, return the length of the longest alphabetical continuous substring.

 

Example 1:

Input: s = "abacaba"
Output: 2
Explanation: There are 4 distinct continuous substrings: "a", "b", "c" and "ab".
"ab" is the longest continuous substring.

Example 2:

Input: s = "abcde"
Output: 5
Explanation: "abcde" is the longest continuous substring.

 

Constraints:

  • 1 <= s.length <= 105
  • s consists of only English lowercase letters.

Solutions

Solution 1: Two Pointers

We use two pointers $i$ and $j$ to point to the start and end of the current consecutive substring respectively. Traverse the string $s$, if the current character $s[j]$ is greater than $s[j-1]$, then move $j$ one step to the right, otherwise update $i$ to $j$, and update the length of the longest consecutive substring.

The time complexity is $O(n)$, where $n$ is the length of the string $s$. The space complexity is $O(1)$.

  • class Solution {
        public int longestContinuousSubstring(String s) {
            int ans = 0;
            int i = 0, j = 1;
            for (; j < s.length(); ++j) {
                ans = Math.max(ans, j - i);
                if (s.charAt(j) - s.charAt(j - 1) != 1) {
                    i = j;
                }
            }
            ans = Math.max(ans, j - i);
            return ans;
        }
    }
    
  • class Solution {
    public:
        int longestContinuousSubstring(string s) {
            int ans = 0;
            int i = 0, j = 1;
            for (; j < s.size(); ++j) {
                ans = max(ans, j - i);
                if (s[j] - s[j - 1] != 1) {
                    i = j;
                }
            }
            ans = max(ans, j - i);
            return ans;
        }
    };
    
  • class Solution:
        def longestContinuousSubstring(self, s: str) -> int:
            ans = 0
            i, j = 0, 1
            while j < len(s):
                ans = max(ans, j - i)
                if ord(s[j]) - ord(s[j - 1]) != 1:
                    i = j
                j += 1
            ans = max(ans, j - i)
            return ans
    
    
  • func longestContinuousSubstring(s string) int {
    	ans := 0
    	i, j := 0, 1
    	for ; j < len(s); j++ {
    		ans = max(ans, j-i)
    		if s[j]-s[j-1] != 1 {
    			i = j
    		}
    	}
    	ans = max(ans, j-i)
    	return ans
    }
    
  • function longestContinuousSubstring(s: string): number {
        const n = s.length;
        let res = 1;
        let i = 0;
        for (let j = 1; j < n; j++) {
            if (s[j].charCodeAt(0) - s[j - 1].charCodeAt(0) !== 1) {
                res = Math.max(res, j - i);
                i = j;
            }
        }
        return Math.max(res, n - i);
    }
    
    
  • impl Solution {
        pub fn longest_continuous_substring(s: String) -> i32 {
            let s = s.as_bytes();
            let n = s.len();
            let mut res = 1;
            let mut i = 0;
            for j in 1..n {
                if s[j] - s[j - 1] != 1 {
                    res = res.max(j - i);
                    i = j;
                }
            }
            res.max(n - i) as i32
        }
    }
    
    

All Problems

All Solutions