Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/2218.html

2218. Maximum Value of K Coins From Piles (Hard)

There are n piles of coins on a table. Each pile consists of a positive number of coins of assorted denominations.

In one move, you can choose any coin on top of any pile, remove it, and add it to your wallet.

Given a list piles, where piles[i] is a list of integers denoting the composition of the ith pile from top to bottom, and a positive integer k, return the maximum total value of coins you can have in your wallet if you choose exactly k coins optimally.

 

Example 1:

Input: piles = [[1,100,3],[7,8,9]], k = 2
Output: 101
Explanation:
The above diagram shows the different ways we can choose k coins.
The maximum total we can obtain is 101.

Example 2:

Input: piles = [[100],[100],[100],[100],[100],[100],[1,1,1,1,1,1,700]], k = 7
Output: 706
Explanation:
The maximum total can be obtained if we choose all coins from the last pile.

 

Constraints:

  • n == piles.length
  • 1 <= n <= 1000
  • 1 <= piles[i][j] <= 105
  • 1 <= k <= sum(piles[i].length) <= 2000

Companies:
Google

Related Topics:
Array, Dynamic Programming, Prefix Sum

Similar Questions:

Solution 1. Top-down DP

Let dp[i][j] be the max value of j coins using piles i ~ N-1. The answer is dp[0][k].

For dp[i][j], we can try using t elements from A[i] (0 <= t <= min(j, A[i].size())), getting A[i][0] + ... + A[i][t-1] value plus dp[i+1][j-t] value (the max value of j-t coins using piles i+1 ~ N-1). We try different ts and assign the max value to dp[i][j].

dp[i][j] = max( dp[i+1][j-t] + sum(i, t) | 0 <= t <= min(j, A[i].size()) )
            where sum(i, t) = A[i][0] + ... + A[i][t-1]

The trivial case is dp[N][j] = 0, i.e. we can’t get any value from the nonexistent A[N].

  • // OJ: https://leetcode.com/problems/maximum-value-of-k-coins-from-piles/
    // Time: O(NM) where `M = sum(A[i].size())`
    // Space: O(NK)
    class Solution {
    public:
        int maxValueOfCoins(vector<vector<int>>& A, int k) {
            int N = A.size(), m[1001][2001] = {};
            memset(m, -1, sizeof(m));
            function<int(int, int)> dp =[&](int i, int j) {
                if (i == N) return 0;
                if (m[i][j] != -1) return m[i][j];
                int ans = dp(i + 1, j), sum = 0;
                for (int t = 1; t <= j && t <= A[i].size(); ++t) {
                    sum += A[i][t - 1];
                    ans = max(ans, dp(i + 1, j - t) + sum);
                }
                return m[i][j] = ans;
            };
            return dp(0, k);
        }
    };
    
  • class Solution:
        def maxValueOfCoins(self, piles: List[List[int]], k: int) -> int:
            presum = [list(accumulate(p, initial=0)) for p in piles]
            dp = [0] * (k + 1)
            for s in presum:
                for j in range(k, -1, -1):
                    for idx, v in enumerate(s):
                        if j >= idx:
                            dp[j] = max(dp[j], dp[j - idx] + v)
            return dp[-1]
    
    ############
    
    # 2218. Maximum Value of K Coins From Piles
    # https://leetcode.com/problems/maximum-value-of-k-coins-from-piles/
    
    class Solution:
        def maxValueOfCoins(self, piles: List[List[int]], K: int) -> int:
            rows, cols = len(piles), len(piles[0])
            
            @cache
            def go(rowIndex, k):
                if k == 0: return 0
                if rowIndex == rows: return 0
                
                res = 0
                curr = 0
                currK = k
                
                # skip to take this
                res = max(res, go(rowIndex + 1, k))
                
                for i, x in enumerate(piles[rowIndex]):
                    curr += x
                    currK -= 1
                    
                    if currK >= 0:
                        res = max(res, curr + go(rowIndex + 1, currK))
                    else:
                        break
                
                return res
            
            return go(0, K)
    
    
  • class Solution {
        public int maxValueOfCoins(List<List<Integer>> piles, int k) {
            int n = piles.size();
            List<int[]> presum = new ArrayList<>();
            for (List<Integer> p : piles) {
                int m = p.size();
                int[] s = new int[m + 1];
                for (int i = 0; i < m; ++i) {
                    s[i + 1] = s[i] + p.get(i);
                }
                presum.add(s);
            }
            int[] dp = new int[k + 1];
            for (int[] s : presum) {
                for (int j = k; j >= 0; --j) {
                    for (int idx = 0; idx < s.length; ++idx) {
                        if (j >= idx) {
                            dp[j] = Math.max(dp[j], dp[j - idx] + s[idx]);
                        }
                    }
                }
            }
            return dp[k];
        }
    }
    
  • func maxValueOfCoins(piles [][]int, k int) int {
    	var presum [][]int
    	for _, p := range piles {
    		m := len(p)
    		s := make([]int, m+1)
    		for i, v := range p {
    			s[i+1] = s[i] + v
    		}
    		presum = append(presum, s)
    	}
    	dp := make([]int, k+1)
    	for _, s := range presum {
    		for j := k; j >= 0; j-- {
    			for idx, v := range s {
    				if j >= idx {
    					dp[j] = max(dp[j], dp[j-idx]+v)
    				}
    			}
    		}
    	}
    	return dp[k]
    }
    
    func max(a, b int) int {
    	if a > b {
    		return a
    	}
    	return b
    }
    

Solution 2. Bottom-up DP

  • // OJ: https://leetcode.com/problems/maximum-value-of-k-coins-from-piles/
    // Time: O(NK)
    // Space: O(NK)
    class Solution {
    public:
        int maxValueOfCoins(vector<vector<int>>& A, int k) {
            int dp[1001][2001] = {}, N = A.size();
            for (int i = 0; i < N; ++i) {
                for (int j = 1; j <= k; ++j) {
                    dp[i + 1][j] = dp[i][j];
                    for (int t = 1, sum = 0; t <= j && t <= A[i].size(); ++t) {
                        sum += A[i][t - 1];
                        dp[i + 1][j] = max(dp[i + 1][j], dp[i][j - t] + sum);
                    }
                }
            }
            return dp[N][k];
        }
    };
    
  • class Solution:
        def maxValueOfCoins(self, piles: List[List[int]], k: int) -> int:
            presum = [list(accumulate(p, initial=0)) for p in piles]
            dp = [0] * (k + 1)
            for s in presum:
                for j in range(k, -1, -1):
                    for idx, v in enumerate(s):
                        if j >= idx:
                            dp[j] = max(dp[j], dp[j - idx] + v)
            return dp[-1]
    
    ############
    
    # 2218. Maximum Value of K Coins From Piles
    # https://leetcode.com/problems/maximum-value-of-k-coins-from-piles/
    
    class Solution:
        def maxValueOfCoins(self, piles: List[List[int]], K: int) -> int:
            rows, cols = len(piles), len(piles[0])
            
            @cache
            def go(rowIndex, k):
                if k == 0: return 0
                if rowIndex == rows: return 0
                
                res = 0
                curr = 0
                currK = k
                
                # skip to take this
                res = max(res, go(rowIndex + 1, k))
                
                for i, x in enumerate(piles[rowIndex]):
                    curr += x
                    currK -= 1
                    
                    if currK >= 0:
                        res = max(res, curr + go(rowIndex + 1, currK))
                    else:
                        break
                
                return res
            
            return go(0, K)
    
    
  • class Solution {
        public int maxValueOfCoins(List<List<Integer>> piles, int k) {
            int n = piles.size();
            List<int[]> presum = new ArrayList<>();
            for (List<Integer> p : piles) {
                int m = p.size();
                int[] s = new int[m + 1];
                for (int i = 0; i < m; ++i) {
                    s[i + 1] = s[i] + p.get(i);
                }
                presum.add(s);
            }
            int[] dp = new int[k + 1];
            for (int[] s : presum) {
                for (int j = k; j >= 0; --j) {
                    for (int idx = 0; idx < s.length; ++idx) {
                        if (j >= idx) {
                            dp[j] = Math.max(dp[j], dp[j - idx] + s[idx]);
                        }
                    }
                }
            }
            return dp[k];
        }
    }
    
  • func maxValueOfCoins(piles [][]int, k int) int {
    	var presum [][]int
    	for _, p := range piles {
    		m := len(p)
    		s := make([]int, m+1)
    		for i, v := range p {
    			s[i+1] = s[i] + v
    		}
    		presum = append(presum, s)
    	}
    	dp := make([]int, k+1)
    	for _, s := range presum {
    		for j := k; j >= 0; j-- {
    			for idx, v := range s {
    				if j >= idx {
    					dp[j] = max(dp[j], dp[j-idx]+v)
    				}
    			}
    		}
    	}
    	return dp[k]
    }
    
    func max(a, b int) int {
    	if a > b {
    		return a
    	}
    	return b
    }
    

The space complexity can be reduced to O(K).

  • // OJ: https://leetcode.com/problems/maximum-value-of-k-coins-from-piles/
    // Time: O(NK)
    // Space: O(K)
    class Solution {
    public:
        int maxValueOfCoins(vector<vector<int>>& A, int k) {
            int dp[2001] = {}, N = A.size();
            for (int i = 0; i < N; ++i) {
                for (int j = k; j >= 1; --j) {
                    for (int t = 1, sum = 0; t <= j && t <= A[i].size(); ++t) {
                        sum += A[i][t - 1];
                        dp[j] = max(dp[j], dp[j - t] + sum);
                    }
                }
            }
            return dp[k];
        }
    };
    
  • class Solution:
        def maxValueOfCoins(self, piles: List[List[int]], k: int) -> int:
            presum = [list(accumulate(p, initial=0)) for p in piles]
            dp = [0] * (k + 1)
            for s in presum:
                for j in range(k, -1, -1):
                    for idx, v in enumerate(s):
                        if j >= idx:
                            dp[j] = max(dp[j], dp[j - idx] + v)
            return dp[-1]
    
    ############
    
    # 2218. Maximum Value of K Coins From Piles
    # https://leetcode.com/problems/maximum-value-of-k-coins-from-piles/
    
    class Solution:
        def maxValueOfCoins(self, piles: List[List[int]], K: int) -> int:
            rows, cols = len(piles), len(piles[0])
            
            @cache
            def go(rowIndex, k):
                if k == 0: return 0
                if rowIndex == rows: return 0
                
                res = 0
                curr = 0
                currK = k
                
                # skip to take this
                res = max(res, go(rowIndex + 1, k))
                
                for i, x in enumerate(piles[rowIndex]):
                    curr += x
                    currK -= 1
                    
                    if currK >= 0:
                        res = max(res, curr + go(rowIndex + 1, currK))
                    else:
                        break
                
                return res
            
            return go(0, K)
    
    
  • class Solution {
        public int maxValueOfCoins(List<List<Integer>> piles, int k) {
            int n = piles.size();
            List<int[]> presum = new ArrayList<>();
            for (List<Integer> p : piles) {
                int m = p.size();
                int[] s = new int[m + 1];
                for (int i = 0; i < m; ++i) {
                    s[i + 1] = s[i] + p.get(i);
                }
                presum.add(s);
            }
            int[] dp = new int[k + 1];
            for (int[] s : presum) {
                for (int j = k; j >= 0; --j) {
                    for (int idx = 0; idx < s.length; ++idx) {
                        if (j >= idx) {
                            dp[j] = Math.max(dp[j], dp[j - idx] + s[idx]);
                        }
                    }
                }
            }
            return dp[k];
        }
    }
    
  • func maxValueOfCoins(piles [][]int, k int) int {
    	var presum [][]int
    	for _, p := range piles {
    		m := len(p)
    		s := make([]int, m+1)
    		for i, v := range p {
    			s[i+1] = s[i] + v
    		}
    		presum = append(presum, s)
    	}
    	dp := make([]int, k+1)
    	for _, s := range presum {
    		for j := k; j >= 0; j-- {
    			for idx, v := range s {
    				if j >= idx {
    					dp[j] = max(dp[j], dp[j-idx]+v)
    				}
    			}
    		}
    	}
    	return dp[k]
    }
    
    func max(a, b int) int {
    	if a > b {
    		return a
    	}
    	return b
    }
    

Discuss

https://leetcode.com/problems/maximum-value-of-k-coins-from-piles/discuss/1886910

All Problems

All Solutions