Welcome to Subscribe On Youtube

2331. Evaluate Boolean Binary Tree

Description

You are given the root of a full binary tree with the following properties:

  • Leaf nodes have either the value 0 or 1, where 0 represents False and 1 represents True.
  • Non-leaf nodes have either the value 2 or 3, where 2 represents the boolean OR and 3 represents the boolean AND.

The evaluation of a node is as follows:

  • If the node is a leaf node, the evaluation is the value of the node, i.e. True or False.
  • Otherwise, evaluate the node's two children and apply the boolean operation of its value with the children's evaluations.

Return the boolean result of evaluating the root node.

A full binary tree is a binary tree where each node has either 0 or 2 children.

A leaf node is a node that has zero children.

 

Example 1:

Input: root = [2,1,3,null,null,0,1]
Output: true
Explanation: The above diagram illustrates the evaluation process.
The AND node evaluates to False AND True = False.
The OR node evaluates to True OR False = True.
The root node evaluates to True, so we return true.

Example 2:

Input: root = [0]
Output: false
Explanation: The root node is a leaf node and it evaluates to false, so we return false.

 

Constraints:

  • The number of nodes in the tree is in the range [1, 1000].
  • 0 <= Node.val <= 3
  • Every node has either 0 or 2 children.
  • Leaf nodes have a value of 0 or 1.
  • Non-leaf nodes have a value of 2 or 3.

Solutions

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public boolean evaluateTree(TreeNode root) {
            return dfs(root);
        }
    
        private boolean dfs(TreeNode root) {
            if (root.left == null && root.right == null) {
                return root.val == 1;
            }
            boolean l = dfs(root.left), r = dfs(root.right);
            if (root.val == 2) {
                return l || r;
            }
            return l && r;
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        bool evaluateTree(TreeNode* root) {
            return dfs(root);
        }
    
        bool dfs(TreeNode* root) {
            if (!root->left && !root->right) return root->val;
            bool l = dfs(root->left), r = dfs(root->right);
            if (root->val == 2) return l || r;
            return l && r;
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def evaluateTree(self, root: Optional[TreeNode]) -> bool:
            def dfs(root):
                if root.left is None and root.right is None:
                    return bool(root.val)
                l, r = dfs(root.left), dfs(root.right)
                return (l or r) if root.val == 2 else (l and r)
    
            return dfs(root)
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func evaluateTree(root *TreeNode) bool {
    	var dfs func(*TreeNode) bool
    	dfs = func(root *TreeNode) bool {
    		if root.Left == nil && root.Right == nil {
    			return root.Val == 1
    		}
    		l, r := dfs(root.Left), dfs(root.Right)
    		if root.Val == 2 {
    			return l || r
    		}
    		return l && r
    	}
    	return dfs(root)
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function evaluateTree(root: TreeNode | null): boolean {
        const { val, left, right } = root;
        if (left == null) {
            return val === 1;
        }
        if (val === 2) {
            return evaluateTree(left) || evaluateTree(right);
        }
        return evaluateTree(left) && evaluateTree(right);
    }
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    impl Solution {
        fn dfs(root: &Option<Rc<RefCell<TreeNode>>>) -> bool {
            let root = root.as_ref().unwrap().as_ref().borrow();
            if root.left.is_none() {
                return root.val == 1;
            }
            if root.val == 2 {
                return Self::dfs(&root.left) || Self::dfs(&root.right);
            }
            Self::dfs(&root.left) && Self::dfs(&root.right)
        }
    
        pub fn evaluate_tree(root: Option<Rc<RefCell<TreeNode>>>) -> bool {
            Self::dfs(&root)
        }
    }
    
    

All Problems

All Solutions