Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/2207.html
2207. Maximize Number of Subsequences in a String (Medium)
You are given a 0-indexed string text
and another 0-indexed string pattern
of length 2
, both of which consist of only lowercase English letters.
You can add either pattern[0]
or pattern[1]
anywhere in text
exactly once. Note that the character can be added even at the beginning or at the end of text
.
Return the maximum number of times pattern
can occur as a subsequence of the modified text
.
A subsequence is a string that can be derived from another string by deleting some or no characters without changing the order of the remaining characters.
Example 1:
Input: text = "abdcdbc", pattern = "ac" Output: 4 Explanation: If we add pattern[0] = 'a' in between text[1] and text[2], we get "abadcdbc". Now, the number of times "ac" occurs as a subsequence is 4. Some other strings which have 4 subsequences "ac" after adding a character to text are "aabdcdbc" and "abdacdbc". However, strings such as "abdcadbc", "abdccdbc", and "abdcdbcc", although obtainable, have only 3 subsequences "ac" and are thus suboptimal. It can be shown that it is not possible to get more than 4 subsequences "ac" by adding only one character.
Example 2:
Input: text = "aabb", pattern = "ab" Output: 6 Explanation: Some of the strings which can be obtained from text and have 6 subsequences "ab" are "aaabb", "aaabb", and "aabbb".
Constraints:
1 <= text.length <= 105
pattern.length == 2
text
andpattern
consist only of lowercase English letters.
Similar Questions:
Solution 1. Prefix Sum and Suffix Sum
Step 1: count the number of subsequences in s
without insertion as sum
.
Step 2: At each index i
, let a
be the count of p[0]
in prefix, and b
be the count of p[1]
in the suffix.
If we append p[0]
, we get sum + b
subsequences. IF we append p[1]
, we get sum + a
subsequences.
-
// OJ: https://leetcode.com/problems/maximize-number-of-subsequences-in-a-string/ // Time: O(N) // Space: O(1) class Solution { public: long long maximumSubsequenceCount(string s, string p) { long a = 0, b = 0, sum = 0; for (char c : s) b += c == p[1]; long tmp = b; for (char c : s) { tmp -= c == p[1]; if (c == p[0]) sum += tmp; } long ans = b; for (char c : s) { a += c == p[0]; b -= c == p[1]; ans = max({ ans, b, a }); } return sum + ans; } };
-
class Solution: def maximumSubsequenceCount(self, text: str, pattern: str) -> int: ans = 0 cnt = Counter() for c in text: if c == pattern[1]: ans += cnt[pattern[0]] cnt[c] += 1 ans += max(cnt[pattern[0]], cnt[pattern[1]]) return ans ############ # 2207. Maximize Number of Subsequences in a String # https://leetcode.com/problems/maximize-number-of-subsequences-in-a-string class Solution: def maximumSubsequenceCount(self, text: str, pattern: str) -> int: p1, p2 = pattern if p1 == p2: n = text.count(p1) + 1 return n * (n - 1) // 2 def count(s): res = curr = 0 for x in s: if x == p1: curr += 1 elif x == p2: res += curr return res return max(count(p1 + text), count(text + p2))
-
class Solution { public long maximumSubsequenceCount(String text, String pattern) { int[] cnt = new int[26]; char a = pattern.charAt(0); char b = pattern.charAt(1); long ans = 0; for (char c : text.toCharArray()) { if (c == b) { ans += cnt[a - 'a']; } cnt[c - 'a']++; } ans += Math.max(cnt[a - 'a'], cnt[b - 'a']); return ans; } }
-
func maximumSubsequenceCount(text string, pattern string) int64 { ans := 0 cnt := make([]int, 26) a, b := pattern[0], pattern[1] for i := range text { c := text[i] if c == b { ans += cnt[a-'a'] } cnt[c-'a']++ } ans += max(cnt[a-'a'], cnt[b-'a']) return int64(ans) } func max(a, b int) int { if a > b { return a } return b }
In fact, we can see that, we just need the global maximum of all a
and b
values. This leads to solution 2.
Solution 2. Prefix Sum and Suffix Sum
If we add p[0]
, the best option is to prepend it at the beginning.
If we add p[1]
, the best option is to append it at the end.
-
// OJ: https://leetcode.com/problems/maximize-number-of-subsequences-in-a-string/ // Time: O(N) // Space: O(1) class Solution { public: long long maximumSubsequenceCount(string s, string p) { long a = 0, b = 0, sum = 0; for (char c : s) { if (c == p[1]) sum += a; a += c == p[0]; b += c == p[1]; } return sum + max(a, b); } };
-
class Solution: def maximumSubsequenceCount(self, text: str, pattern: str) -> int: ans = 0 cnt = Counter() for c in text: if c == pattern[1]: ans += cnt[pattern[0]] cnt[c] += 1 ans += max(cnt[pattern[0]], cnt[pattern[1]]) return ans ############ # 2207. Maximize Number of Subsequences in a String # https://leetcode.com/problems/maximize-number-of-subsequences-in-a-string class Solution: def maximumSubsequenceCount(self, text: str, pattern: str) -> int: p1, p2 = pattern if p1 == p2: n = text.count(p1) + 1 return n * (n - 1) // 2 def count(s): res = curr = 0 for x in s: if x == p1: curr += 1 elif x == p2: res += curr return res return max(count(p1 + text), count(text + p2))
-
class Solution { public long maximumSubsequenceCount(String text, String pattern) { int[] cnt = new int[26]; char a = pattern.charAt(0); char b = pattern.charAt(1); long ans = 0; for (char c : text.toCharArray()) { if (c == b) { ans += cnt[a - 'a']; } cnt[c - 'a']++; } ans += Math.max(cnt[a - 'a'], cnt[b - 'a']); return ans; } }
-
func maximumSubsequenceCount(text string, pattern string) int64 { ans := 0 cnt := make([]int, 26) a, b := pattern[0], pattern[1] for i := range text { c := text[i] if c == b { ans += cnt[a-'a'] } cnt[c-'a']++ } ans += max(cnt[a-'a'], cnt[b-'a']) return int64(ans) } func max(a, b int) int { if a > b { return a } return b }
Discuss
https://leetcode.com/problems/maximize-number-of-subsequences-in-a-string/discuss/1863963