Welcome to Subscribe On Youtube
2261. K Divisible Elements Subarrays
Description
Given an integer array nums
and two integers k
and p
, return the number of distinct subarrays, which have at most k
elements that are divisible by p
.
Two arrays nums1
and nums2
are said to be distinct if:
- They are of different lengths, or
- There exists at least one index
i
wherenums1[i] != nums2[i]
.
A subarray is defined as a non-empty contiguous sequence of elements in an array.
Example 1:
Input: nums = [2,3,3,2,2], k = 2, p = 2 Output: 11 Explanation: The elements at indices 0, 3, and 4 are divisible by p = 2. The 11 distinct subarrays which have at most k = 2 elements divisible by 2 are: [2], [2,3], [2,3,3], [2,3,3,2], [3], [3,3], [3,3,2], [3,3,2,2], [3,2], [3,2,2], and [2,2]. Note that the subarrays [2] and [3] occur more than once in nums, but they should each be counted only once. The subarray [2,3,3,2,2] should not be counted because it has 3 elements that are divisible by 2.
Example 2:
Input: nums = [1,2,3,4], k = 4, p = 1 Output: 10 Explanation: All element of nums are divisible by p = 1. Also, every subarray of nums will have at most 4 elements that are divisible by 1. Since all subarrays are distinct, the total number of subarrays satisfying all the constraints is 10.
Constraints:
1 <= nums.length <= 200
1 <= nums[i], p <= 200
1 <= k <= nums.length
Follow up:
Can you solve this problem in O(n2) time complexity?
Solutions
-
class Solution { public int countDistinct(int[] nums, int k, int p) { int n = nums.length; Set<String> s = new HashSet<>(); for (int i = 0; i < n; ++i) { int cnt = 0; String t = ""; for (int j = i; j < n; ++j) { if (nums[j] % p == 0 && ++cnt > k) { break; } t += nums[j] + ","; s.add(t); } } return s.size(); } }
-
class Solution { public: int countDistinct(vector<int>& nums, int k, int p) { unordered_set<string> s; int n = nums.size(); for (int i = 0; i < n; ++i) { int cnt = 0; string t; for (int j = i; j < n; ++j) { if (nums[j] % p == 0 && ++cnt > k) { break; } t += to_string(nums[j]) + ","; s.insert(t); } } return s.size(); } };
-
class Solution: def countDistinct(self, nums: List[int], k: int, p: int) -> int: n = len(nums) s = set() for i in range(n): cnt = 0 for j in range(i, n): cnt += nums[j] % p == 0 if cnt > k: break s.add(tuple(nums[i : j + 1])) return len(s)
-
func countDistinct(nums []int, k int, p int) int { s := map[string]struct{}{} for i := range nums { cnt, t := 0, "" for _, x := range nums[i:] { if x%p == 0 { cnt++ if cnt > k { break } } t += string(x) + "," s[t] = struct{}{} } } return len(s) }
-
function countDistinct(nums: number[], k: number, p: number): number { const n = nums.length; const s = new Set(); for (let i = 0; i < n; ++i) { let cnt = 0; let t = ''; for (let j = i; j < n; ++j) { if (nums[j] % p === 0 && ++cnt > k) { break; } t += nums[j].toString() + ','; s.add(t); } } return s.size; }