Welcome to Subscribe On Youtube
2202. Maximize the Topmost Element After K Moves
Description
You are given a 0-indexed integer array nums
representing the contents of a pile, where nums[0]
is the topmost element of the pile.
In one move, you can perform either of the following:
- If the pile is not empty, remove the topmost element of the pile.
- If there are one or more removed elements, add any one of them back onto the pile. This element becomes the new topmost element.
You are also given an integer k
, which denotes the total number of moves to be made.
Return the maximum value of the topmost element of the pile possible after exactly k
moves. In case it is not possible to obtain a non-empty pile after k
moves, return -1
.
Example 1:
Input: nums = [5,2,2,4,0,6], k = 4 Output: 5 Explanation: One of the ways we can end with 5 at the top of the pile after 4 moves is as follows: - Step 1: Remove the topmost element = 5. The pile becomes [2,2,4,0,6]. - Step 2: Remove the topmost element = 2. The pile becomes [2,4,0,6]. - Step 3: Remove the topmost element = 2. The pile becomes [4,0,6]. - Step 4: Add 5 back onto the pile. The pile becomes [5,4,0,6]. Note that this is not the only way to end with 5 at the top of the pile. It can be shown that 5 is the largest answer possible after 4 moves.
Example 2:
Input: nums = [2], k = 1 Output: -1 Explanation: In the first move, our only option is to pop the topmost element of the pile. Since it is not possible to obtain a non-empty pile after one move, we return -1.
Constraints:
1 <= nums.length <= 105
0 <= nums[i], k <= 109
Solutions
-
class Solution { public int maximumTop(int[] nums, int k) { if (k == 0) { return nums[0]; } int n = nums.length; if (n == 1) { if (k % 2 == 1) { return -1; } return nums[0]; } int ans = -1; for (int i = 0; i < Math.min(k - 1, n); ++i) { ans = Math.max(ans, nums[i]); } if (k < n) { ans = Math.max(ans, nums[k]); } return ans; } }
-
class Solution { public: int maximumTop(vector<int>& nums, int k) { if (k == 0) return nums[0]; int n = nums.size(); if (n == 1) { if (k % 2) return -1; return nums[0]; } int ans = -1; for (int i = 0; i < min(k - 1, n); ++i) ans = max(ans, nums[i]); if (k < n) ans = max(ans, nums[k]); return ans; } };
-
class Solution: def maximumTop(self, nums: List[int], k: int) -> int: if k == 0: return nums[0] n = len(nums) if n == 1: if k % 2: return -1 return nums[0] ans = max(nums[: k - 1], default=-1) if k < n: ans = max(ans, nums[k]) return ans
-
func maximumTop(nums []int, k int) int { if k == 0 { return nums[0] } n := len(nums) if n == 1 { if k%2 == 1 { return -1 } return nums[0] } ans := -1 for i := 0; i < min(k-1, n); i++ { ans = max(ans, nums[i]) } if k < n { ans = max(ans, nums[k]) } return ans }