Welcome to Subscribe On Youtube
2168. Unique Substrings With Equal Digit Frequency
Description
Given a digit string s
, return the number of unique substrings of s
where every digit appears the same number of times.
Example 1:
Input: s = "1212" Output: 5 Explanation: The substrings that meet the requirements are "1", "2", "12", "21", "1212". Note that although the substring "12" appears twice, it is only counted once.
Example 2:
Input: s = "12321" Output: 9 Explanation: The substrings that meet the requirements are "1", "2", "3", "12", "23", "32", "21", "123", "321".
Constraints:
1 <= s.length <= 1000
s
consists of digits.
Solutions
-
class Solution { public int equalDigitFrequency(String s) { int n = s.length(); int[][] presum = new int[n + 1][10]; for (int i = 0; i < n; ++i) { ++presum[i + 1][s.charAt(i) - '0']; for (int j = 0; j < 10; ++j) { presum[i + 1][j] += presum[i][j]; } } Set<String> vis = new HashSet<>(); for (int i = 0; i < n; ++i) { for (int j = i; j < n; ++j) { if (check(i, j, presum)) { vis.add(s.substring(i, j + 1)); } } } return vis.size(); } private boolean check(int i, int j, int[][] presum) { Set<Integer> v = new HashSet<>(); for (int k = 0; k < 10; ++k) { int cnt = presum[j + 1][k] - presum[i][k]; if (cnt > 0) { v.add(cnt); } if (v.size() > 1) { return false; } } return true; } }
-
class Solution: def equalDigitFrequency(self, s: str) -> int: def check(i, j): v = set() for k in range(10): cnt = presum[j + 1][k] - presum[i][k] if cnt > 0: v.add(cnt) if len(v) > 1: return False return True n = len(s) presum = [[0] * 10 for _ in range(n + 1)] for i, c in enumerate(s): presum[i + 1][int(c)] += 1 for j in range(10): presum[i + 1][j] += presum[i][j] vis = set(s[i : j + 1] for i in range(n) for j in range(i, n) if check(i, j)) return len(vis)
-
func equalDigitFrequency(s string) int { n := len(s) presum := make([][]int, n+1) for i := range presum { presum[i] = make([]int, 10) } for i, c := range s { presum[i+1][c-'0']++ for j := 0; j < 10; j++ { presum[i+1][j] += presum[i][j] } } check := func(i, j int) bool { v := make(map[int]bool) for k := 0; k < 10; k++ { cnt := presum[j+1][k] - presum[i][k] if cnt > 0 { v[cnt] = true } if len(v) > 1 { return false } } return true } vis := make(map[string]bool) for i := 0; i < n; i++ { for j := i; j < n; j++ { if check(i, j) { vis[s[i:j+1]] = true } } } return len(vis) }