Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/1977.html
1977. Number of Ways to Separate Numbers
Level
Hard
Description
You wrote down many positive integers in a string called num
. However, you realized that you forgot to add commas to seperate the different numbers. You remember that the list of integers was non-decreasing and that no integer had leading zeros.
Return the number of possible lists of integers that you could have written down to get the string num
. Since the answer may be large, return it modulo 10^9 + 7
.
Example 1:
Input: num = “327”
Output: 2
Explanation: You could have written down the numbers:
3, 27
327
Example 2:
Input: num = “094”
Output: 0
Explanation: No numbers can have leading zeros and all numbers must be positive.
Example 3:
Input: num = “0”
Output: 0
Explanation: No numbers can have leading zeros and all numbers must be positive.
Example 4:
Input: num = “9999999999999”
Output: 101
Constraints:
1 <= num.length <= 3500
num
consists of digits'0'
through'9'
.
Solution
Use dynamic programming with precalculation. First, precalculate the longest common prefixes of each pair of substrings. Next, use dynamic programming to count the number of ways.
-
class Solution { public int numberOfCombinations(String num) { final int MODULO = 1000000007; if (num.charAt(0) == '0') return 0; int length = num.length(); int[][] lcp = new int[length][length]; for (int i = length - 1; i >= 0; i--) { lcp[i][length - 1] = num.charAt(i) == num.charAt(length - 1) ? 1 : 0; for (int j = i + 1; j < length - 1; j++) lcp[i][j] = num.charAt(i) == num.charAt(j) ? lcp[i + 1][j + 1] + 1 : 0; } int[][] dp = new int[length][length]; for (int i = 0; i < length; i++) dp[0][i] = 1; for (int i = 1; i < length; i++) { if (num.charAt(i) == '0') continue; int presum = 0; for (int j = i; j < length; ++j) { int range = j - i + 1; dp[i][j] = presum; if (i - range >= 0) { if (lcp[i - range][i] >= range || num.charAt(i - range + lcp[i - range][i]) < num.charAt(i + lcp[i - range][i])) dp[i][j] = (dp[i][j] + dp[i - range][i - 1]) % MODULO; presum = (presum + dp[i - range][i - 1]) % MODULO; } } } int ways = 0; for (int i = 0; i < length; i++) ways = (ways + dp[i][length - 1]) % MODULO; return ways; } } ############ class Solution { private static final int MOD = (int) 1e9 + 7; public int numberOfCombinations(String num) { int n = num.length(); int[][] lcp = new int[n + 1][n + 1]; for (int i = n - 1; i >= 0; --i) { for (int j = n - 1; j >= 0; --j) { if (num.charAt(i) == num.charAt(j)) { lcp[i][j] = 1 + lcp[i + 1][j + 1]; } } } int[][] dp = new int[n + 1][n + 1]; dp[0][0] = 1; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= i; ++j) { int v = 0; if (num.charAt(i - j) != '0') { if (i - j - j >= 0) { int x = lcp[i - j][i - j - j]; if (x >= j || num.charAt(i - j + x) >= num.charAt(i - j - j + x)) { v = dp[i - j][j]; } } if (v == 0) { v = dp[i - j][Math.min(j - 1, i - j)]; } } dp[i][j] = (dp[i][j - 1] + v) % MOD; } } return dp[n][n]; } }
-
// OJ: https://leetcode.com/problems/number-of-ways-to-separate-numbers/ // Time: O(N^2) // Space: O(N^2) class Solution { long mod = 1e9 + 7, N; vector<vector<long>> lcp, m, msum; long sum(string &s, int i, int prevLen) { if (i >= N || prevLen > N - i - 1) return 0; if (msum[i][prevLen] != -1) return msum[i][prevLen]; long ans = (dp(s, i + prevLen + 1, prevLen + 1) + sum(s, i, prevLen + 1)) % mod; return msum[i][prevLen] = ans; } long dp(string &s, int i, int prevLen = 0) { if (i >= N) return i == N; if (s[i] == '0') return 0; if (m[i][prevLen] != -1) return m[i][prevLen]; long ans = 0; if (prevLen && i + prevLen <= N) { int len = lcp[i - prevLen][i]; if (len >= prevLen || s[i - prevLen + len] < s[i + len]) ans = dp(s, i + prevLen, prevLen); } ans = (ans + sum(s, i, prevLen)) % mod; return m[i][prevLen] = ans; } public: int numberOfCombinations(string s) { if (s[0] == '0') return 0; N = s.size(); lcp.assign(N + 1, vector<long>(N + 1, 0)); m.assign(N + 1, vector<long>(N + 1, -1)); msum.assign(N + 1, vector<long>(N + 1, -1)); for (int i = N - 2; i >= 0; --i) { for (int j = N - 1; j > i; --j) { if (s[i] == s[j]) lcp[i][j] = 1 + lcp[i + 1][j + 1]; } } return dp(s, 0); } };
-
class Solution: def numberOfCombinations(self, num: str) -> int: def cmp(i, j, k): x = lcp[i][j] return x >= k or num[i + x] >= num[j + x] mod = 10**9 + 7 n = len(num) lcp = [[0] * (n + 1) for _ in range(n + 1)] for i in range(n - 1, -1, -1): for j in range(n - 1, -1, -1): if num[i] == num[j]: lcp[i][j] = 1 + lcp[i + 1][j + 1] dp = [[0] * (n + 1) for _ in range(n + 1)] dp[0][0] = 1 for i in range(1, n + 1): for j in range(1, i + 1): v = 0 if num[i - j] != '0': if i - j - j >= 0 and cmp(i - j, i - j - j, j): v = dp[i - j][j] else: v = dp[i - j][min(j - 1, i - j)] dp[i][j] = (dp[i][j - 1] + v) % mod return dp[n][n]
-
func numberOfCombinations(num string) int { n := len(num) lcp := make([][]int, n+1) dp := make([][]int, n+1) for i := range lcp { lcp[i] = make([]int, n+1) dp[i] = make([]int, n+1) } for i := n - 1; i >= 0; i-- { for j := n - 1; j >= 0; j-- { if num[i] == num[j] { lcp[i][j] = 1 + lcp[i+1][j+1] } } } cmp := func(i, j, k int) bool { x := lcp[i][j] return x >= k || num[i+x] >= num[j+x] } dp[0][0] = 1 var mod int = 1e9 + 7 for i := 1; i <= n; i++ { for j := 1; j <= i; j++ { v := 0 if num[i-j] != '0' { if i-j-j >= 0 && cmp(i-j, i-j-j, j) { v = dp[i-j][j] } else { v = dp[i-j][min(j-1, i-j)] } } dp[i][j] = (dp[i][j-1] + v) % mod } } return dp[n][n] } func min(a, b int) int { if a < b { return a } return b }