Welcome to Subscribe On Youtube
Formatted question description: https://leetcode.ca/all/1969.html
1969. Minimum Non-Zero Product of the Array Elements
Level
Medium
Description
You are given a positive integer p
. Consider an array nums
(1-indexed) that consists of the integers in the inclusive range [1, 2^p - 1]
in their binary representations. You are allowed to do the following operation any number of times:
- Choose two elements
x
andy
fromnums
. - Choose a bit in
x
and swap it with its corresponding bit iny
. Corresponding bit refers to the bit that is in the same position in the other integer.
For example, if x = 1101
and y = 0011
, after swapping the 2nd
bit from the right, we have x = 1111
and y = 0001
.
Find the minimum non-zero product of nums
after performing the above operation any number of times. Return this product modulo 10^9 + 7
.
Note: The answer should be the minimum product before the modulo operation is done.
Example 1:
Input: p = 1
Output: 1
Explanation: nums = [1].
There is only one element, so the product equals that element.
Example 2:
Input: p = 2
Output: 6
Explanation: nums = [01, 10, 11].
Any swap would either make the product 0 or stay the same.
Thus, the array product of 1 * 2 * 3 = 6 is already minimized.
Example 3:
Input: p = 3
Output: 1512
Explanation: nums = [001, 010, 011, 100, 101, 110, 111]
- In the first operation we can swap the leftmost bit of the second and fifth elements.
- The resulting array is [001, 110, 011, 100, 001, 110, 111].
- In the second operation we can swap the middle bit of the third and fourth elements.
- The resulting array is [001, 110, 001, 110, 001, 110, 111].
The array product is 1 * 6 * 1 * 6 * 1 * 6 * 7 = 1512, which is the minimum possible product.
Constraints:
1 <= p <= 60
Solution
The maximum element is 2^p - 1
. To make the product minimum, the elements should have the greatest difference possible. That is, for the remaining elements, half of the elements are 1 and half of the elements are 2^p - 2
. Then calculate the product.
-
class Solution { static final long MODULO = 1000000007; public int minNonZeroProduct(int p) { long maxNum = (1L << p) - 1; long remain = maxNum - 1; long pairs = remain / 2; long minProduct = quickMul(remain, pairs) * (maxNum % MODULO) % MODULO; return (int) (minProduct % MODULO); } public long quickMul(long x, long n) { x %= MODULO; long power = 1; while (n > 0) { if (n % 2 == 1) power = power * x % MODULO; x = x * x % MODULO; n /= 2; } return power; } }
-
// OJ: https://leetcode.com/problems/minimum-non-zero-product-of-the-array-elements/ // Time: O(logP) // Space: O(1) class Solution { long long modpow(long long base, long long exp, long long mod) { base %= mod; long long ans = 1; while (exp > 0) { if (exp & 1) ans = ans * base % mod; base = base * base % mod; exp >>= 1; } return ans; } public: int minNonZeroProduct(int p) { long long mod = 1e9 + 7, mx = (1LL << p) - 1, next = mx - 1, ans = 1; return modpow(next, mx / 2, mod) * (mx % mod) % mod; } };
-
# 1969. Minimum Non-Zero Product of the Array Elements # https://leetcode.com/problems/minimum-non-zero-product-of-the-array-elements/ class Solution: def minNonZeroProduct(self, p: int) -> int: M = 10 ** 9 + 7 return (pow(2 ** p - 2, 2 ** (p - 1) - 1, M) * (2 ** p - 1)) % M
-
func minNonZeroProduct(p int) int { const mod int = 1e9 + 7 a := ((1 << p) - 1) % mod b := qmi(((1<<p)-2)%mod, (1<<(p-1))-1, mod) return a * b % mod } func qmi(a, k, p int) int { res := 1 for k != 0 { if k&1 == 1 { res = res * a % p } k >>= 1 a = a * a % p } return res }
-
function minNonZeroProduct(p: number): number { const mod = BigInt(1e9 + 7); const qpow = (a: bigint, n: bigint): bigint => { let ans = BigInt(1); for (; n; n >>= BigInt(1)) { if (n & BigInt(1)) { ans = (ans * a) % mod; } a = (a * a) % mod; } return ans; }; const a = (2n ** BigInt(p) - 1n) % mod; const b = qpow((2n ** BigInt(p) - 2n) % mod, 2n ** (BigInt(p) - 1n) - 1n); return Number((a * b) % mod); }