Welcome to Subscribe On Youtube

Formatted question description: https://leetcode.ca/all/1923.html

1923. Longest Common Subpath

Level

Hard

Description

There is a country of n cities numbered from 0 to n - 1. In this country, there is a road connecting every pair of cities.

There are m friends numbered from 0 to m - 1 who are traveling through the country. Each one of them will take a path consisting of some cities. Each path is represented by an integer array that contains the visited cities in order. The path may contain a city more than once, but the same city will not be listed consecutively.

Given an integer n and a 2D integer array paths where paths[i] is an integer array representing the path of the i-th friend, return the length of the longest common subpath that is shared by every friend’s path, or 0 if there is no common subpath at all.

A subpath of a path is a contiguous sequence of cities within that path.

Example 1:

Input: n = 5, paths = [[0,1,2,3,4],
                       [2,3,4],
                       [4,0,1,2,3]]
Output: 2
Explanation: The longest common subpath is [2,3].

Example 2:

Input: n = 3, paths = [[0],[1],[2]]
Output: 0
Explanation: There is no common subpath shared by the three paths.

Example 3:

Input: n = 5, paths = [[0,1,2,3,4],
                       [4,3,2,1,0]]
Output: 1
Explanation: The possible longest common subpaths are [0], [1], [2], [3], and [4]. All have a length of 1.

Constraints:

  • 1 <= n <= 10^5
  • m == paths.length
  • 2 <= m <= 10^5
  • sum(paths[i].length) <= 10^5
  • 0 <= paths[i][j] < n
  • The same city is not listed multiple times consecutively in paths[i].

Solution

Use binary search and rolling hash. The minimum possible length is 0 and the maximum possible length is the shortest length among all paths. Each time, check whether it is possible to have a common subpath of the selected length.

  • class Solution {
        static final long BASE = 100001, MODULO = 100000000007L;
    
        public int longestCommonSubpath(int n, int[][] paths) {
            int minLength = Integer.MAX_VALUE;
            for (int[] path : paths)
                minLength = Math.min(minLength, path.length);
            long[] pow = new long[minLength + 1];
            pow[0] = 1;
            for (int i = 1; i <= minLength; i++)
                pow[i] = pow[i - 1] * BASE % MODULO;
            int low = 0, high = minLength;
            while (low < high) {
                int mid = (high - low + 1) / 2 + low;
                if (check(paths, mid, pow))
                    low = mid;
                else
                    high = mid - 1;
            }
            return low;
        }
    
        public boolean check(int[][] paths, int mid, long[] pow) {
            int m = paths.length;
            Set<Long> set = rollingHash(paths[0], mid, pow);
            for (int i = 1; i < m; i++) {
                set.retainAll(rollingHash(paths[i], mid, pow));
                if (set.isEmpty())
                    return false;
            }
            return true;
        }
    
        public Set<Long> rollingHash(int[] path, int mid, long[] pow) {
            Set<Long> set = new HashSet<Long>();
            long hash = 0;
            int length = path.length;
            for (int i = 0; i < mid; i++)
                hash = (hash * BASE + path[i]) % MODULO;
            set.add(hash);
            for (int prev = 0, curr = mid; curr < length; prev++, curr++) {
                hash = (hash * BASE % MODULO - path[prev] * pow[mid] % MODULO + path[curr]) % MODULO;
                if (hash < 0)
                    hash += MODULO;
                set.add(hash);
            }
            return set;
        }
    }
    
    ############
    
    class Solution {
        int N = 100010;
        long[] h = new long[N];
        long[] p = new long[N];
        private int[][] paths;
        Map<Long, Integer> cnt = new HashMap<>();
        Map<Long, Integer> inner = new HashMap<>();
    
        public int longestCommonSubpath(int n, int[][] paths) {
            int left = 0, right = N;
            for (int[] path : paths) {
                right = Math.min(right, path.length);
            }
            this.paths = paths;
            while (left < right) {
                int mid = (left + right + 1) >> 1;
                if (check(mid)) {
                    left = mid;
                } else {
                    right = mid - 1;
                }
            }
            return left;
        }
    
        private boolean check(int mid) {
            cnt.clear();
            inner.clear();
            p[0] = 1;
            for (int j = 0; j < paths.length; ++j) {
                int n = paths[j].length;
                for (int i = 1; i <= n; ++i) {
                    p[i] = p[i - 1] * 133331;
                    h[i] = h[i - 1] * 133331 + paths[j][i - 1];
                }
                for (int i = mid; i <= n; ++i) {
                    long val = get(i - mid + 1, i);
                    if (!inner.containsKey(val) || inner.get(val) != j) {
                        inner.put(val, j);
                        cnt.put(val, cnt.getOrDefault(val, 0) + 1);
                    }
                }
            }
            int max = 0;
            for (int val : cnt.values()) {
                max = Math.max(max, val);
            }
            return max == paths.length;
        }
    
        private long get(int l, int r) {
            return h[r] - h[l - 1] * p[r - l + 1];
        }
    }
    
  • // OJ: https://leetcode.com/problems/longest-common-subpath/
    // Time: O(N + logM * P) where P is the total length of all paths.
    // Space: O(M)
    class Solution {
        bool valid(vector<vector<int>> &A, int len) {
            unordered_set<unsigned long long> s, tmp;
            for (int i = 0; i < A.size() && (i == 0 || s.size()); ++i) {
                unsigned long long d = 1099511628211, h = 0, p = 1;
                tmp.clear();
                swap(s, tmp);
                for (int j = 0; j < A[i].size(); ++j) {
                    h = h * d + A[i][j];
                    if (j < len) p *= d;
                    else h -= A[i][j - len] * p;
                    if (j >= len - 1 && (i == 0 || tmp.count(h))) s.insert(h);
                }
            }
            return s.size();
        }
    public:
        int longestCommonSubpath(int n, vector<vector<int>>& A) {
            int L = 0, R = min_element(begin(A), end(A), [](auto &a, auto &b) { return a.size() < b.size(); })->size();
            while (L < R) {
                int M = (L + R + 1) / 2;
                if (valid(A, M)) L = M;
                else R = M - 1;
            }
            return L;
        }
    };
    
  • class Solution:
        def longestCommonSubpath(self, n: int, paths: List[List[int]]) -> int:
            def get(l, r, h):
                return (h[r] - h[l - 1] * p[r - l + 1]) % mod
    
            def check(l):
                cnt = Counter()
                for k, path in enumerate(paths):
                    vis = set()
                    for i in range(len(path) - l + 1):
                        j = i + l - 1
                        x = get(i + 1, j + 1, hh[k])
                        if x not in vis:
                            vis.add(x)
                            cnt[x] += 1
                return max(cnt.values()) == len(paths)
    
            base = 133331
            mod = 2**64 + 1
            p = [0] * 100010
            p[0] = 1
            for i in range(1, len(p)):
                p[i] = (p[i - 1] * base) % mod
            hh = []
            for path in paths:
                h = [0] * (len(path) + 10)
                for j, c in enumerate(path):
                    h[j + 1] = (h[j] * base) % mod + c
                hh.append(h)
            left, right = 0, min(len(path) for path in paths)
            while left < right:
                mid = (left + right + 1) >> 1
                if check(mid):
                    left = mid
                else:
                    right = mid - 1
            return left
    
    
    

All Problems

All Solutions