Welcome to Subscribe On Youtube
2036. Maximum Alternating Subarray Sum
Description
A subarray of a 0-indexed integer array is a contiguous non-empty sequence of elements within an array.
The alternating subarray sum of a subarray that ranges from index i
to j
(inclusive, 0 <= i <= j < nums.length
) is nums[i] - nums[i+1] + nums[i+2] - ... +/- nums[j]
.
Given a 0-indexed integer array nums
, return the maximum alternating subarray sum of any subarray of nums
.
Example 1:
Input: nums = [3,-1,1,2] Output: 5 Explanation: The subarray [3,-1,1] has the largest alternating subarray sum. The alternating subarray sum is 3 - (-1) + 1 = 5.
Example 2:
Input: nums = [2,2,2,2,2] Output: 2 Explanation: The subarrays [2], [2,2,2], and [2,2,2,2,2] have the largest alternating subarray sum. The alternating subarray sum of [2] is 2. The alternating subarray sum of [2,2,2] is 2 - 2 + 2 = 2. The alternating subarray sum of [2,2,2,2,2] is 2 - 2 + 2 - 2 + 2 = 2.
Example 3:
Input: nums = [1] Output: 1 Explanation: There is only one non-empty subarray, which is [1]. The alternating subarray sum is 1.
Constraints:
1 <= nums.length <= 105
-105 <= nums[i] <= 105
Solutions
Solution 1: Dynamic Programming
We define $f$ as the maximum sum of the alternating subarray ending with $nums[i]$, and define $g$ as the maximum sum of the alternating subarray ending with $-nums[i]$. Initially, both $f$ and $g$ are $-\infty$.
Next, we traverse the array $nums$. For position $i$, we need to maintain the values of $f$ and $g$, i.e., $f = \max(g, 0) + nums[i]$, and $g = f - nums[i]$. The answer is the maximum value among all $f$ and $g$.
The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
-
class Solution { public long maximumAlternatingSubarraySum(int[] nums) { final long inf = 1L << 60; long ans = -inf, f = -inf, g = -inf; for (int x : nums) { long ff = Math.max(g, 0) + x; g = f - x; f = ff; ans = Math.max(ans, Math.max(f, g)); } return ans; } }
-
class Solution { public: long long maximumAlternatingSubarraySum(vector<int>& nums) { using ll = long long; const ll inf = 1LL << 60; ll ans = -inf, f = -inf, g = -inf; for (int x : nums) { ll ff = max(g, 0LL) + x; g = f - x; f = ff; ans = max({ans, f, g}); } return ans; } };
-
class Solution: def maximumAlternatingSubarraySum(self, nums: List[int]) -> int: ans = f = g = -inf for x in nums: f, g = max(g, 0) + x, f - x ans = max(ans, f, g) return ans
-
func maximumAlternatingSubarraySum(nums []int) int64 { const inf = 1 << 60 ans, f, g := -inf, -inf, -inf for _, x := range nums { f, g = max(g, 0)+x, f-x ans = max(ans, max(f, g)) } return int64(ans) }
-
function maximumAlternatingSubarraySum(nums: number[]): number { let [ans, f, g] = [-Infinity, -Infinity, -Infinity]; for (const x of nums) { [f, g] = [Math.max(g, 0) + x, f - x]; ans = Math.max(ans, f, g); } return ans; }