Welcome to Subscribe On Youtube
2012. Sum of Beauty in the Array
Description
You are given a 0-indexed integer array nums
. For each index i
(1 <= i <= nums.length - 2
) the beauty of nums[i]
equals:
2
, ifnums[j] < nums[i] < nums[k]
, for all0 <= j < i
and for alli < k <= nums.length - 1
.1
, ifnums[i - 1] < nums[i] < nums[i + 1]
, and the previous condition is not satisfied.0
, if none of the previous conditions holds.
Return the sum of beauty of all nums[i]
where 1 <= i <= nums.length - 2
.
Example 1:
Input: nums = [1,2,3] Output: 2 Explanation: For each index i in the range 1 <= i <= 1: - The beauty of nums[1] equals 2.
Example 2:
Input: nums = [2,4,6,4] Output: 1 Explanation: For each index i in the range 1 <= i <= 2: - The beauty of nums[1] equals 1. - The beauty of nums[2] equals 0.
Example 3:
Input: nums = [3,2,1] Output: 0 Explanation: For each index i in the range 1 <= i <= 1: - The beauty of nums[1] equals 0.
Constraints:
3 <= nums.length <= 105
1 <= nums[i] <= 105
Solutions
Solution 1: Preprocessing Right Minimum + Traversing to Maintain Left Maximum
We can preprocess the right minimum array $right$, where $right[i]$ represents the minimum value in $nums[i..n-1]$.
Then we traverse the array $nums$ from left to right, while maintaining the maximum value $l$ on the left. For each position $i$, we judge whether $l < nums[i] < right[i + 1]$ holds. If it does, we add $2$ to the answer. Otherwise, we judge whether $nums[i - 1] < nums[i] < nums[i + 1]$ holds. If it does, we add $1$ to the answer.
After the traversal, we can get the answer.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.
-
class Solution { public int sumOfBeauties(int[] nums) { int n = nums.length; int[] right = new int[n]; right[n - 1] = nums[n - 1]; for (int i = n - 2; i > 0; --i) { right[i] = Math.min(right[i + 1], nums[i]); } int ans = 0; int l = nums[0]; for (int i = 1; i < n - 1; ++i) { int r = right[i + 1]; if (l < nums[i] && nums[i] < r) { ans += 2; } else if (nums[i - 1] < nums[i] && nums[i] < nums[i + 1]) { ans += 1; } l = Math.max(l, nums[i]); } return ans; } }
-
class Solution { public: int sumOfBeauties(vector<int>& nums) { int n = nums.size(); vector<int> right(n, nums[n - 1]); for (int i = n - 2; i; --i) { right[i] = min(right[i + 1], nums[i]); } int ans = 0; for (int i = 1, l = nums[0]; i < n - 1; ++i) { int r = right[i + 1]; if (l < nums[i] && nums[i] < r) { ans += 2; } else if (nums[i - 1] < nums[i] && nums[i] < nums[i + 1]) { ans += 1; } l = max(l, nums[i]); } return ans; } };
-
class Solution: def sumOfBeauties(self, nums: List[int]) -> int: n = len(nums) right = [nums[-1]] * n for i in range(n - 2, -1, -1): right[i] = min(right[i + 1], nums[i]) ans = 0 l = nums[0] for i in range(1, n - 1): r = right[i + 1] if l < nums[i] < r: ans += 2 elif nums[i - 1] < nums[i] < nums[i + 1]: ans += 1 l = max(l, nums[i]) return ans
-
func sumOfBeauties(nums []int) (ans int) { n := len(nums) right := make([]int, n) right[n-1] = nums[n-1] for i := n - 2; i > 0; i-- { right[i] = min(right[i+1], nums[i]) } for i, l := 1, nums[0]; i < n-1; i++ { r := right[i+1] if l < nums[i] && nums[i] < r { ans += 2 } else if nums[i-1] < nums[i] && nums[i] < nums[i+1] { ans++ } l = max(l, nums[i]) } return }
-
function sumOfBeauties(nums: number[]): number { const n = nums.length; const right: number[] = Array(n).fill(nums[n - 1]); for (let i = n - 2; i; --i) { right[i] = Math.min(right[i + 1], nums[i]); } let ans = 0; for (let i = 1, l = nums[0]; i < n - 1; ++i) { const r = right[i + 1]; if (l < nums[i] && nums[i] < r) { ans += 2; } else if (nums[i - 1] < nums[i] && nums[i] < nums[i + 1]) { ans += 1; } l = Math.max(l, nums[i]); } return ans; }