Welcome to Subscribe On Youtube
1993. Operations on Tree
Description
You are given a tree with n
nodes numbered from 0
to n - 1
in the form of a parent array parent
where parent[i]
is the parent of the ith
node. The root of the tree is node 0
, so parent[0] = -1
since it has no parent. You want to design a data structure that allows users to lock, unlock, and upgrade nodes in the tree.
The data structure should support the following functions:
- Lock: Locks the given node for the given user and prevents other users from locking the same node. You may only lock a node using this function if the node is unlocked.
- Unlock: Unlocks the given node for the given user. You may only unlock a node using this function if it is currently locked by the same user.
- Upgrade: Locks the given node for the given user and unlocks all of its descendants regardless of who locked it. You may only upgrade a node if all 3 conditions are true:
- The node is unlocked,
- It has at least one locked descendant (by any user), and
- It does not have any locked ancestors.
Implement the LockingTree
class:
LockingTree(int[] parent)
initializes the data structure with the parent array.lock(int num, int user)
returnstrue
if it is possible for the user with iduser
to lock the nodenum
, orfalse
otherwise. If it is possible, the nodenum
will become locked by the user with iduser
.unlock(int num, int user)
returnstrue
if it is possible for the user with iduser
to unlock the nodenum
, orfalse
otherwise. If it is possible, the nodenum
will become unlocked.upgrade(int num, int user)
returnstrue
if it is possible for the user with iduser
to upgrade the nodenum
, orfalse
otherwise. If it is possible, the nodenum
will be upgraded.
Example 1:
Input ["LockingTree", "lock", "unlock", "unlock", "lock", "upgrade", "lock"] [[[-1, 0, 0, 1, 1, 2, 2]], [2, 2], [2, 3], [2, 2], [4, 5], [0, 1], [0, 1]] Output [null, true, false, true, true, true, false] Explanation LockingTree lockingTree = new LockingTree([-1, 0, 0, 1, 1, 2, 2]); lockingTree.lock(2, 2); // return true because node 2 is unlocked. // Node 2 will now be locked by user 2. lockingTree.unlock(2, 3); // return false because user 3 cannot unlock a node locked by user 2. lockingTree.unlock(2, 2); // return true because node 2 was previously locked by user 2. // Node 2 will now be unlocked. lockingTree.lock(4, 5); // return true because node 4 is unlocked. // Node 4 will now be locked by user 5. lockingTree.upgrade(0, 1); // return true because node 0 is unlocked and has at least one locked descendant (node 4). // Node 0 will now be locked by user 1 and node 4 will now be unlocked. lockingTree.lock(0, 1); // return false because node 0 is already locked.
Constraints:
n == parent.length
2 <= n <= 2000
0 <= parent[i] <= n - 1
fori != 0
parent[0] == -1
0 <= num <= n - 1
1 <= user <= 104
parent
represents a valid tree.- At most
2000
calls in total will be made tolock
,unlock
, andupgrade
.
Solutions
DFS.
-
class LockingTree { private int[] locked; private int[] parent; private List<Integer>[] children; public LockingTree(int[] parent) { int n = parent.length; locked = new int[n]; this.parent = parent; children = new List[n]; Arrays.fill(locked, -1); Arrays.setAll(children, i -> new ArrayList<>()); for (int i = 1; i < n; i++) { children[parent[i]].add(i); } } public boolean lock(int num, int user) { if (locked[num] == -1) { locked[num] = user; return true; } return false; } public boolean unlock(int num, int user) { if (locked[num] == user) { locked[num] = -1; return true; } return false; } public boolean upgrade(int num, int user) { int x = num; while (x != -1) { if (locked[x] != -1) { return false; } x = parent[x]; } boolean[] find = new boolean[1]; dfs(num, find); if (!find[0]) { return false; } locked[num] = user; return true; } private void dfs(int x, boolean[] find) { for (int y : children[x]) { if (locked[y] != -1) { locked[y] = -1; find[0] = true; } dfs(y, find); } } } /** * Your LockingTree object will be instantiated and called as such: * LockingTree obj = new LockingTree(parent); * boolean param_1 = obj.lock(num,user); * boolean param_2 = obj.unlock(num,user); * boolean param_3 = obj.upgrade(num,user); */
-
class LockingTree { public: LockingTree(vector<int>& parent) { int n = parent.size(); locked = vector<int>(n, -1); this->parent = parent; children.resize(n); for (int i = 1; i < n; ++i) { children[parent[i]].push_back(i); } } bool lock(int num, int user) { if (locked[num] == -1) { locked[num] = user; return true; } return false; } bool unlock(int num, int user) { if (locked[num] == user) { locked[num] = -1; return true; } return false; } bool upgrade(int num, int user) { int x = num; while (x != -1) { if (locked[x] != -1) { return false; } x = parent[x]; } bool find = false; function<void(int)> dfs = [&](int x) { for (int y : children[x]) { if (locked[y] != -1) { find = true; locked[y] = -1; } dfs(y); } }; dfs(num); if (!find) { return false; } locked[num] = user; return true; } private: vector<int> locked; vector<int> parent; vector<vector<int>> children; }; /** * Your LockingTree object will be instantiated and called as such: * LockingTree* obj = new LockingTree(parent); * bool param_1 = obj->lock(num,user); * bool param_2 = obj->unlock(num,user); * bool param_3 = obj->upgrade(num,user); */
-
class LockingTree: def __init__(self, parent: List[int]): n = len(parent) self.locked = [-1] * n self.parent = parent self.children = [[] for _ in range(n)] for son, fa in enumerate(parent[1:], 1): self.children[fa].append(son) def lock(self, num: int, user: int) -> bool: if self.locked[num] == -1: self.locked[num] = user return True return False def unlock(self, num: int, user: int) -> bool: if self.locked[num] == user: self.locked[num] = -1 return True return False def upgrade(self, num: int, user: int) -> bool: def dfs(x: int): nonlocal find for y in self.children[x]: if self.locked[y] != -1: self.locked[y] = -1 find = True dfs(y) x = num while x != -1: if self.locked[x] != -1: return False x = self.parent[x] find = False dfs(num) if not find: return False self.locked[num] = user return True # Your LockingTree object will be instantiated and called as such: # obj = LockingTree(parent) # param_1 = obj.lock(num,user) # param_2 = obj.unlock(num,user) # param_3 = obj.upgrade(num,user)
-
type LockingTree struct { locked []int parent []int children [][]int } func Constructor(parent []int) LockingTree { n := len(parent) locked := make([]int, n) for i := range locked { locked[i] = -1 } children := make([][]int, n) for i := 1; i < n; i++ { children[parent[i]] = append(children[parent[i]], i) } return LockingTree{locked, parent, children} } func (this *LockingTree) Lock(num int, user int) bool { if this.locked[num] == -1 { this.locked[num] = user return true } return false } func (this *LockingTree) Unlock(num int, user int) bool { if this.locked[num] == user { this.locked[num] = -1 return true } return false } func (this *LockingTree) Upgrade(num int, user int) bool { x := num for ; x != -1; x = this.parent[x] { if this.locked[x] != -1 { return false } } find := false var dfs func(int) dfs = func(x int) { for _, y := range this.children[x] { if this.locked[y] != -1 { find = true this.locked[y] = -1 } dfs(y) } } dfs(num) if !find { return false } this.locked[num] = user return true } /** * Your LockingTree object will be instantiated and called as such: * obj := Constructor(parent); * param_1 := obj.Lock(num,user); * param_2 := obj.Unlock(num,user); * param_3 := obj.Upgrade(num,user); */
-
class LockingTree { private locked: number[]; private parent: number[]; private children: number[][]; constructor(parent: number[]) { const n = parent.length; this.locked = Array(n).fill(-1); this.parent = parent; this.children = Array(n) .fill(0) .map(() => []); for (let i = 1; i < n; i++) { this.children[parent[i]].push(i); } } lock(num: number, user: number): boolean { if (this.locked[num] === -1) { this.locked[num] = user; return true; } return false; } unlock(num: number, user: number): boolean { if (this.locked[num] === user) { this.locked[num] = -1; return true; } return false; } upgrade(num: number, user: number): boolean { let x = num; for (; x !== -1; x = this.parent[x]) { if (this.locked[x] !== -1) { return false; } } let find = false; const dfs = (x: number) => { for (const y of this.children[x]) { if (this.locked[y] !== -1) { this.locked[y] = -1; find = true; } dfs(y); } }; dfs(num); if (!find) { return false; } this.locked[num] = user; return true; } } /** * Your LockingTree object will be instantiated and called as such: * var obj = new LockingTree(parent) * var param_1 = obj.lock(num,user) * var param_2 = obj.unlock(num,user) * var param_3 = obj.upgrade(num,user) */