Welcome to Subscribe On Youtube
1942. The Number of the Smallest Unoccupied Chair
Description
There is a party where n
friends numbered from 0
to n - 1
are attending. There is an infinite number of chairs in this party that are numbered from 0
to infinity
. When a friend arrives at the party, they sit on the unoccupied chair with the smallest number.
- For example, if chairs
0
,1
, and5
are occupied when a friend comes, they will sit on chair number2
.
When a friend leaves the party, their chair becomes unoccupied at the moment they leave. If another friend arrives at that same moment, they can sit in that chair.
You are given a 0-indexed 2D integer array times
where times[i] = [arrivali, leavingi]
, indicating the arrival and leaving times of the ith
friend respectively, and an integer targetFriend
. All arrival times are distinct.
Return the chair number that the friend numbered targetFriend
will sit on.
Example 1:
Input: times = [[1,4],[2,3],[4,6]], targetFriend = 1 Output: 1 Explanation: - Friend 0 arrives at time 1 and sits on chair 0. - Friend 1 arrives at time 2 and sits on chair 1. - Friend 1 leaves at time 3 and chair 1 becomes empty. - Friend 0 leaves at time 4 and chair 0 becomes empty. - Friend 2 arrives at time 4 and sits on chair 0. Since friend 1 sat on chair 1, we return 1.
Example 2:
Input: times = [[3,10],[1,5],[2,6]], targetFriend = 0 Output: 2 Explanation: - Friend 1 arrives at time 1 and sits on chair 0. - Friend 2 arrives at time 2 and sits on chair 1. - Friend 0 arrives at time 3 and sits on chair 2. - Friend 1 leaves at time 5 and chair 0 becomes empty. - Friend 2 leaves at time 6 and chair 1 becomes empty. - Friend 0 leaves at time 10 and chair 2 becomes empty. Since friend 0 sat on chair 2, we return 2.
Constraints:
n == times.length
2 <= n <= 104
times[i].length == 2
1 <= arrivali < leavingi <= 105
0 <= targetFriend <= n - 1
- Each
arrivali
time is distinct.
Solutions
-
class Solution { public int smallestChair(int[][] times, int targetFriend) { int n = times.length; int[][] ts = new int[n][3]; PriorityQueue<Integer> q = new PriorityQueue<>(); PriorityQueue<int[]> busy = new PriorityQueue<>((a, b) -> a[0] - b[0]); for (int i = 0; i < n; ++i) { ts[i] = new int[] {times[i][0], times[i][1], i}; q.offer(i); } Arrays.sort(ts, (a, b) -> a[0] - b[0]); for (int[] t : ts) { int a = t[0], b = t[1], i = t[2]; while (!busy.isEmpty() && busy.peek()[0] <= a) { q.offer(busy.poll()[1]); } int c = q.poll(); if (i == targetFriend) { return c; } busy.offer(new int[] {b, c}); } return -1; } }
-
using pii = pair<int, int>; class Solution { public: int smallestChair(vector<vector<int>>& times, int targetFriend) { priority_queue<int, vector<int>, greater<int>> q; priority_queue<pii, vector<pii>, greater<pii>> busy; int n = times.size(); for (int i = 0; i < n; ++i) { times[i].push_back(i); q.push(i); } sort(times.begin(), times.end()); for (auto& t : times) { int a = t[0], b = t[1], i = t[2]; while (!busy.empty() && busy.top().first <= a) { q.push(busy.top().second); busy.pop(); } int c = q.top(); q.pop(); if (i == targetFriend) return c; busy.push({b, c}); } return -1; } };
-
class Solution: def smallestChair(self, times: List[List[int]], targetFriend: int) -> int: n = len(times) h = list(range(n)) heapify(h) for i in range(n): times[i].append(i) times.sort() busy = [] for a, b, i in times: while busy and busy[0][0] <= a: heappush(h, heappop(busy)[1]) c = heappop(h) if i == targetFriend: return c heappush(busy, (b, c)) return -1
-
func smallestChair(times [][]int, targetFriend int) int { idle := hp{} busy := hp2{} for i := range times { times[i] = append(times[i], i) heap.Push(&idle, i) } sort.Slice(times, func(i, j int) bool { return times[i][0] < times[j][0] }) for _, e := range times { arrival, leaving, i := e[0], e[1], e[2] for len(busy) > 0 && busy[0].t <= arrival { heap.Push(&idle, heap.Pop(&busy).(pair).i) } j := heap.Pop(&idle).(int) if i == targetFriend { return j } heap.Push(&busy, pair{leaving, j}) } return -1 } type hp struct{ sort.IntSlice } func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] } func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) } func (h *hp) Pop() any { a := h.IntSlice v := a[len(a)-1] h.IntSlice = a[:len(a)-1] return v } type pair struct{ t, i int } type hp2 []pair func (h hp2) Len() int { return len(h) } func (h hp2) Less(i, j int) bool { return h[i].t < h[j].t || (h[i].t == h[j].t && h[i].i < h[j].i) } func (h hp2) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *hp2) Push(v any) { *h = append(*h, v.(pair)) } func (h *hp2) Pop() any { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
-
function smallestChair(times: number[][], targetFriend: number): number { const n = times.length; const idle = new MinPriorityQueue(); const busy = new MinPriorityQueue({ priority: v => v[0] }); for (let i = 0; i < n; ++i) { times[i].push(i); idle.enqueue(i); } times.sort((a, b) => a[0] - b[0]); for (const [arrival, leaving, i] of times) { while (busy.size() > 0 && busy.front().element[0] <= arrival) { idle.enqueue(busy.dequeue().element[1]); } const j = idle.dequeue().element; if (i === targetFriend) { return j; } busy.enqueue([leaving, j]); } return -1; }
-
/** * @param {number[][]} times * @param {number} targetFriend * @return {number} */ var smallestChair = function (times, targetFriend) { const n = times.length; const idle = new MinPriorityQueue(); const busy = new MinPriorityQueue({ priority: v => v[0] }); for (let i = 0; i < n; ++i) { times[i].push(i); idle.enqueue(i); } times.sort((a, b) => a[0] - b[0]); for (const [arrival, leaving, i] of times) { while (busy.size() > 0 && busy.front().element[0] <= arrival) { idle.enqueue(busy.dequeue().element[1]); } const j = idle.dequeue().element; if (i === targetFriend) { return j; } busy.enqueue([leaving, j]); } };