Welcome to Subscribe On Youtube

1889. Minimum Space Wasted From Packaging

Description

You have n packages that you are trying to place in boxes, one package in each box. There are m suppliers that each produce boxes of different sizes (with infinite supply). A package can be placed in a box if the size of the package is less than or equal to the size of the box.

The package sizes are given as an integer array packages, where packages[i] is the size of the ith package. The suppliers are given as a 2D integer array boxes, where boxes[j] is an array of box sizes that the jth supplier produces.

You want to choose a single supplier and use boxes from them such that the total wasted space is minimized. For each package in a box, we define the space wasted to be size of the box - size of the package. The total wasted space is the sum of the space wasted in all the boxes.

  • For example, if you have to fit packages with sizes [2,3,5] and the supplier offers boxes of sizes [4,8], you can fit the packages of size-2 and size-3 into two boxes of size-4 and the package with size-5 into a box of size-8. This would result in a waste of (4-2) + (4-3) + (8-5) = 6.

Return the minimum total wasted space by choosing the box supplier optimally, or -1 if it is impossible to fit all the packages inside boxes. Since the answer may be large, return it modulo 109 + 7.

 

Example 1:

Input: packages = [2,3,5], boxes = [[4,8],[2,8]]
Output: 6
Explanation: It is optimal to choose the first supplier, using two size-4 boxes and one size-8 box.
The total waste is (4-2) + (4-3) + (8-5) = 6.

Example 2:

Input: packages = [2,3,5], boxes = [[1,4],[2,3],[3,4]]
Output: -1
Explanation: There is no box that the package of size 5 can fit in.

Example 3:

Input: packages = [3,5,8,10,11,12], boxes = [[12],[11,9],[10,5,14]]
Output: 9
Explanation: It is optimal to choose the third supplier, using two size-5 boxes, two size-10 boxes, and two size-14 boxes.
The total waste is (5-3) + (5-5) + (10-8) + (10-10) + (14-11) + (14-12) = 9.

 

Constraints:

  • n == packages.length
  • m == boxes.length
  • 1 <= n <= 105
  • 1 <= m <= 105
  • 1 <= packages[i] <= 105
  • 1 <= boxes[j].length <= 105
  • 1 <= boxes[j][k] <= 105
  • sum(boxes[j].length) <= 105
  • The elements in boxes[j] are distinct.

Solutions

  • class Solution {
        public int minWastedSpace(int[] packages, int[][] boxes) {
            int n = packages.length;
            final long inf = 1L << 62;
            Arrays.sort(packages);
            long ans = inf;
            for (var box : boxes) {
                Arrays.sort(box);
                if (packages[n - 1] > box[box.length - 1]) {
                    continue;
                }
                long s = 0;
                int i = 0;
                for (int b : box) {
                    int j = search(packages, b, i);
                    s += 1L * (j - i) * b;
                    i = j;
                }
                ans = Math.min(ans, s);
            }
            if (ans == inf) {
                return -1;
            }
            long s = 0;
            for (int p : packages) {
                s += p;
            }
            final int mod = (int) 1e9 + 7;
            return (int) ((ans - s) % mod);
        }
    
        private int search(int[] nums, int x, int l) {
            int r = nums.length;
            while (l < r) {
                int mid = (l + r) >> 1;
                if (nums[mid] > x) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return l;
        }
    }
    
  • class Solution {
    public:
        int minWastedSpace(vector<int>& packages, vector<vector<int>>& boxes) {
            int n = packages.size(), m = boxes.size();
            sort(packages.begin(), packages.end());
            const int mod = 1e9 + 7;
            const long long inf = 1LL << 62;
            long long ans = inf;
            for (auto& box : boxes) {
                sort(box.begin(), box.end());
                if (packages.back() > box.back()) {
                    continue;
                }
                int i = 0;
                long long s = 0;
                for (auto& b : box) {
                    int j = upper_bound(packages.begin() + i, packages.end(), b) - packages.begin();
                    s += 1LL * (j - i) * b;
                    i = j;
                }
                ans = min(ans, s);
            }
            return ans == inf ? -1 : (ans - accumulate(packages.begin(), packages.end(), 0LL)) % mod;
        }
    };
    
  • class Solution:
        def minWastedSpace(self, packages: List[int], boxes: List[List[int]]) -> int:
            mod = 10**9 + 7
            ans = inf
            packages.sort()
            for box in boxes:
                box.sort()
                if packages[-1] > box[-1]:
                    continue
                s = i = 0
                for b in box:
                    j = bisect_right(packages, b, lo=i)
                    s += (j - i) * b
                    i = j
                ans = min(ans, s)
            if ans == inf:
                return -1
            return (ans - sum(packages)) % mod
    
    
  • func minWastedSpace(packages []int, boxes [][]int) int {
    	n := len(packages)
    	inf := 1 << 62
    	sort.Ints(packages)
    	ans := inf
    	for _, box := range boxes {
    		sort.Ints(box)
    		if packages[n-1] > box[len(box)-1] {
    			continue
    		}
    		s, i := 0, 0
    		for _, b := range box {
    			j := sort.SearchInts(packages[i:], b+1) + i
    			s += (j - i) * b
    			i = j
    		}
    		ans = min(ans, s)
    	}
    	if ans == inf {
    		return -1
    	}
    	s := 0
    	for _, p := range packages {
    		s += p
    	}
    	const mod = 1e9 + 7
    	return (ans - s) % mod
    }
    
  • function minWastedSpace(packages: number[], boxes: number[][]): number {
        const n = packages.length;
        const inf = Infinity;
        packages.sort((a, b) => a - b);
        let ans = inf;
        for (const box of boxes) {
            box.sort((a, b) => a - b);
            if (packages[n - 1] > box[box.length - 1]) {
                continue;
            }
            let s = 0;
            let i = 0;
            for (const b of box) {
                const j = search(packages, b, i);
                s += (j - i) * b;
                i = j;
            }
            ans = Math.min(ans, s);
        }
        if (ans === inf) {
            return -1;
        }
        const s = packages.reduce((a, b) => a + b, 0);
        return (ans - s) % 1000000007;
    }
    
    function search(nums: number[], x: number, l: number): number {
        let r = nums.length;
        while (l < r) {
            const mid = (l + r) >> 1;
            if (nums[mid] > x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l;
    }
    
    

All Problems

All Solutions