Welcome to Subscribe On Youtube
1871. Jump Game VII
Description
You are given a 0-indexed binary string s
and two integers minJump
and maxJump
. In the beginning, you are standing at index 0
, which is equal to '0'
. You can move from index i
to index j
if the following conditions are fulfilled:
i + minJump <= j <= min(i + maxJump, s.length - 1)
, ands[j] == '0'
.
Return true
if you can reach index s.length - 1
in s
, or false
otherwise.
Example 1:
Input: s = "011010", minJump = 2, maxJump = 3 Output: true Explanation: In the first step, move from index 0 to index 3. In the second step, move from index 3 to index 5.
Example 2:
Input: s = "01101110", minJump = 2, maxJump = 3 Output: false
Constraints:
2 <= s.length <= 105
s[i]
is either'0'
or'1'
.s[0] == '0'
1 <= minJump <= maxJump < s.length
Solutions
Solution 1: Prefix Sum + Dynamic Programming
We define a prefix sum array $pre$ of length $n+1$, where $pre[i]$ represents the number of reachable positions in the first $i$ positions of $s$. We define a boolean array $f$ of length $n$, where $f[i]$ indicates whether $s[i]$ is reachable. Initially, $pre[1] = 1$ and $f[0] = true$.
Consider $i \in [1, n)$, if $s[i] = 0$, then we need to determine whether there exists a position $j$ in the first $i$ positions of $s$, such that $j$ is reachable and the distance from $j$ to $i$ is within $[minJump, maxJump]$. If such a position $j$ exists, then we have $f[i] = true$, otherwise $f[i] = false$. When determining whether $j$ exists, we can use the prefix sum array $pre$ to determine whether such a position $j$ exists in $O(1)$ time.
The final answer is $f[n-1]$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the string $s$.
-
class Solution { public boolean canReach(String s, int minJump, int maxJump) { int n = s.length(); int[] pre = new int[n + 1]; pre[1] = 1; boolean[] f = new boolean[n]; f[0] = true; for (int i = 1; i < n; ++i) { if (s.charAt(i) == '0') { int l = Math.max(0, i - maxJump); int r = i - minJump; f[i] = l <= r && pre[r + 1] - pre[l] > 0; } pre[i + 1] = pre[i] + (f[i] ? 1 : 0); } return f[n - 1]; } }
-
class Solution { public: bool canReach(string s, int minJump, int maxJump) { int n = s.size(); int pre[n + 1]; memset(pre, 0, sizeof(pre)); pre[1] = 1; bool f[n]; memset(f, 0, sizeof(f)); f[0] = true; for (int i = 1; i < n; ++i) { if (s[i] == '0') { int l = max(0, i - maxJump); int r = i - minJump; f[i] = l <= r && pre[r + 1] - pre[l]; } pre[i + 1] = pre[i] + f[i]; } return f[n - 1]; } };
-
class Solution: def canReach(self, s: str, minJump: int, maxJump: int) -> bool: n = len(s) pre = [0] * (n + 1) pre[1] = 1 f = [True] + [False] * (n - 1) for i in range(1, n): if s[i] == "0": l, r = max(0, i - maxJump), i - minJump f[i] = l <= r and pre[r + 1] - pre[l] > 0 pre[i + 1] = pre[i] + f[i] return f[-1]
-
func canReach(s string, minJump int, maxJump int) bool { n := len(s) pre := make([]int, n+1) pre[1] = 1 f := make([]bool, n) f[0] = true for i := 1; i < n; i++ { if s[i] == '0' { l, r := max(0, i-maxJump), i-minJump f[i] = l <= r && pre[r+1]-pre[l] > 0 } pre[i+1] = pre[i] if f[i] { pre[i+1]++ } } return f[n-1] }
-
function canReach(s: string, minJump: number, maxJump: number): boolean { const n = s.length; const pre: number[] = Array(n + 1).fill(0); pre[1] = 1; const f: boolean[] = Array(n).fill(false); f[0] = true; for (let i = 1; i < n; ++i) { if (s[i] === '0') { const [l, r] = [Math.max(0, i - maxJump), i - minJump]; f[i] = l <= r && pre[r + 1] - pre[l] > 0; } pre[i + 1] = pre[i] + (f[i] ? 1 : 0); } return f[n - 1]; }
-
/** * @param {string} s * @param {number} minJump * @param {number} maxJump * @return {boolean} */ var canReach = function (s, minJump, maxJump) { const n = s.length; const pre = Array(n + 1).fill(0); pre[1] = 1; const f = Array(n).fill(false); f[0] = true; for (let i = 1; i < n; ++i) { if (s[i] === '0') { const [l, r] = [Math.max(0, i - maxJump), i - minJump]; f[i] = l <= r && pre[r + 1] - pre[l] > 0; } pre[i + 1] = pre[i] + (f[i] ? 1 : 0); } return f[n - 1]; };