Welcome to Subscribe On Youtube

1871. Jump Game VII

Description

You are given a 0-indexed binary string s and two integers minJump and maxJump. In the beginning, you are standing at index 0, which is equal to '0'. You can move from index i to index j if the following conditions are fulfilled:

  • i + minJump <= j <= min(i + maxJump, s.length - 1), and
  • s[j] == '0'.

Return true if you can reach index s.length - 1 in s, or false otherwise.

 

Example 1:

Input: s = "011010", minJump = 2, maxJump = 3
Output: true
Explanation:
In the first step, move from index 0 to index 3. 
In the second step, move from index 3 to index 5.

Example 2:

Input: s = "01101110", minJump = 2, maxJump = 3
Output: false

 

Constraints:

  • 2 <= s.length <= 105
  • s[i] is either '0' or '1'.
  • s[0] == '0'
  • 1 <= minJump <= maxJump < s.length

Solutions

Solution 1: Prefix Sum + Dynamic Programming

We define a prefix sum array $pre$ of length $n+1$, where $pre[i]$ represents the number of reachable positions in the first $i$ positions of $s$. We define a boolean array $f$ of length $n$, where $f[i]$ indicates whether $s[i]$ is reachable. Initially, $pre[1] = 1$ and $f[0] = true$.

Consider $i \in [1, n)$, if $s[i] = 0$, then we need to determine whether there exists a position $j$ in the first $i$ positions of $s$, such that $j$ is reachable and the distance from $j$ to $i$ is within $[minJump, maxJump]$. If such a position $j$ exists, then we have $f[i] = true$, otherwise $f[i] = false$. When determining whether $j$ exists, we can use the prefix sum array $pre$ to determine whether such a position $j$ exists in $O(1)$ time.

The final answer is $f[n-1]$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the string $s$.

  • class Solution {
        public boolean canReach(String s, int minJump, int maxJump) {
            int n = s.length();
            int[] pre = new int[n + 1];
            pre[1] = 1;
            boolean[] f = new boolean[n];
            f[0] = true;
            for (int i = 1; i < n; ++i) {
                if (s.charAt(i) == '0') {
                    int l = Math.max(0, i - maxJump);
                    int r = i - minJump;
                    f[i] = l <= r && pre[r + 1] - pre[l] > 0;
                }
                pre[i + 1] = pre[i] + (f[i] ? 1 : 0);
            }
            return f[n - 1];
        }
    }
    
  • class Solution {
    public:
        bool canReach(string s, int minJump, int maxJump) {
            int n = s.size();
            int pre[n + 1];
            memset(pre, 0, sizeof(pre));
            pre[1] = 1;
            bool f[n];
            memset(f, 0, sizeof(f));
            f[0] = true;
            for (int i = 1; i < n; ++i) {
                if (s[i] == '0') {
                    int l = max(0, i - maxJump);
                    int r = i - minJump;
                    f[i] = l <= r && pre[r + 1] - pre[l];
                }
                pre[i + 1] = pre[i] + f[i];
            }
            return f[n - 1];
        }
    };
    
  • class Solution:
        def canReach(self, s: str, minJump: int, maxJump: int) -> bool:
            n = len(s)
            pre = [0] * (n + 1)
            pre[1] = 1
            f = [True] + [False] * (n - 1)
            for i in range(1, n):
                if s[i] == "0":
                    l, r = max(0, i - maxJump), i - minJump
                    f[i] = l <= r and pre[r + 1] - pre[l] > 0
                pre[i + 1] = pre[i] + f[i]
            return f[-1]
    
    
  • func canReach(s string, minJump int, maxJump int) bool {
    	n := len(s)
    	pre := make([]int, n+1)
    	pre[1] = 1
    	f := make([]bool, n)
    	f[0] = true
    	for i := 1; i < n; i++ {
    		if s[i] == '0' {
    			l, r := max(0, i-maxJump), i-minJump
    			f[i] = l <= r && pre[r+1]-pre[l] > 0
    		}
    		pre[i+1] = pre[i]
    		if f[i] {
    			pre[i+1]++
    		}
    	}
    	return f[n-1]
    }
    
  • function canReach(s: string, minJump: number, maxJump: number): boolean {
        const n = s.length;
        const pre: number[] = Array(n + 1).fill(0);
        pre[1] = 1;
        const f: boolean[] = Array(n).fill(false);
        f[0] = true;
        for (let i = 1; i < n; ++i) {
            if (s[i] === '0') {
                const [l, r] = [Math.max(0, i - maxJump), i - minJump];
                f[i] = l <= r && pre[r + 1] - pre[l] > 0;
            }
            pre[i + 1] = pre[i] + (f[i] ? 1 : 0);
        }
        return f[n - 1];
    }
    
    
  • /**
     * @param {string} s
     * @param {number} minJump
     * @param {number} maxJump
     * @return {boolean}
     */
    var canReach = function (s, minJump, maxJump) {
        const n = s.length;
        const pre = Array(n + 1).fill(0);
        pre[1] = 1;
        const f = Array(n).fill(false);
        f[0] = true;
        for (let i = 1; i < n; ++i) {
            if (s[i] === '0') {
                const [l, r] = [Math.max(0, i - maxJump), i - minJump];
                f[i] = l <= r && pre[r + 1] - pre[l] > 0;
            }
            pre[i + 1] = pre[i] + (f[i] ? 1 : 0);
        }
        return f[n - 1];
    };
    
    

All Problems

All Solutions