Welcome to Subscribe On Youtube
1863. Sum of All Subset XOR Totals
Description
The XOR total of an array is defined as the bitwise XOR
of all its elements, or 0
if the array is empty.
- For example, the XOR total of the array
[2,5,6]
is2 XOR 5 XOR 6 = 1
.
Given an array nums
, return the sum of all XOR totals for every subset of nums
.
Note: Subsets with the same elements should be counted multiple times.
An array a
is a subset of an array b
if a
can be obtained from b
by deleting some (possibly zero) elements of b
.
Example 1:
Input: nums = [1,3] Output: 6 Explanation: The 4 subsets of [1,3] are: - The empty subset has an XOR total of 0. - [1] has an XOR total of 1. - [3] has an XOR total of 3. - [1,3] has an XOR total of 1 XOR 3 = 2. 0 + 1 + 3 + 2 = 6
Example 2:
Input: nums = [5,1,6] Output: 28 Explanation: The 8 subsets of [5,1,6] are: - The empty subset has an XOR total of 0. - [5] has an XOR total of 5. - [1] has an XOR total of 1. - [6] has an XOR total of 6. - [5,1] has an XOR total of 5 XOR 1 = 4. - [5,6] has an XOR total of 5 XOR 6 = 3. - [1,6] has an XOR total of 1 XOR 6 = 7. - [5,1,6] has an XOR total of 5 XOR 1 XOR 6 = 2. 0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28
Example 3:
Input: nums = [3,4,5,6,7,8] Output: 480 Explanation: The sum of all XOR totals for every subset is 480.
Constraints:
1 <= nums.length <= 12
1 <= nums[i] <= 20
Solutions
Solution 1: Binary Enumeration
We can use binary enumeration to enumerate all subsets, and then calculate the XOR sum of each subset.
Specifically, we enumerate $i$ in the range $[0, 2^n)$, where $n$ is the length of the array $nums$. If the $j$th bit of the binary representation of $i$ is $1$, it means that the $j$th element of $nums$ is in the current subset; if the $j$th bit is $0$, it means that the $j$th element of $nums$ is not in the current subset. We can get the XOR sum of the current subset according to the binary representation of $i$, and add it to the answer.
The time complexity is $O(n \times 2^n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
Solution 2: DFS (Depth-First Search)
We can also use depth-first search to enumerate all subsets, and then calculate the XOR sum of each subset.
We design a function $dfs(i, s)$, where $i$ represents the current search to the $i$th element of the array $nums$, and $s$ represents the XOR sum of the current subset. Initially, $i=0$, $s=0$. During the search, we have two choices each time:
- Add the $i$th element of $nums$ to the current subset, i.e., $dfs(i+1, s \oplus nums[i])$;
- Do not add the $i$th element of $nums$ to the current subset, i.e., $dfs(i+1, s)$.
When we have searched all elements of the array $nums$, i.e., $i=n$, the XOR sum of the current subset is $s$, and we can add it to the answer.
The time complexity is $O(2^n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array $nums$.
-
class Solution { public int subsetXORSum(int[] nums) { int n = nums.length; int ans = 0; for (int i = 0; i < 1 << n; ++i) { int s = 0; for (int j = 0; j < n; ++j) { if ((i >> j & 1) == 1) { s ^= nums[j]; } } ans += s; } return ans; } }
-
class Solution { public: int subsetXORSum(vector<int>& nums) { int n = nums.size(); int ans = 0; for (int i = 0; i < 1 << n; ++i) { int s = 0; for (int j = 0; j < n; ++j) { if (i >> j & 1) { s ^= nums[j]; } } ans += s; } return ans; } };
-
class Solution: def subsetXORSum(self, nums: List[int]) -> int: ans, n = 0, len(nums) for i in range(1 << n): s = 0 for j in range(n): if i >> j & 1: s ^= nums[j] ans += s return ans
-
func subsetXORSum(nums []int) (ans int) { n := len(nums) for i := 0; i < 1<<n; i++ { s := 0 for j, x := range nums { if i>>j&1 == 1 { s ^= x } } ans += s } return }
-
function subsetXORSum(nums: number[]): number { let ans = 0; const n = nums.length; for (let i = 0; i < 1 << n; ++i) { let s = 0; for (let j = 0; j < n; ++j) { if ((i >> j) & 1) { s ^= nums[j]; } } ans += s; } return ans; }
-
/** * @param {number[]} nums * @return {number} */ var subsetXORSum = function (nums) { let ans = 0; const n = nums.length; for (let i = 0; i < 1 << n; ++i) { let s = 0; for (let j = 0; j < n; ++j) { if ((i >> j) & 1) { s ^= nums[j]; } } ans += s; } return ans; };