Welcome to Subscribe On Youtube
1846. Maximum Element After Decreasing and Rearranging
Description
You are given an array of positive integers arr
. Perform some operations (possibly none) on arr
so that it satisfies these conditions:
- The value of the first element in
arr
must be1
. - The absolute difference between any 2 adjacent elements must be less than or equal to
1
. In other words,abs(arr[i] - arr[i - 1]) <= 1
for eachi
where1 <= i < arr.length
(0-indexed).abs(x)
is the absolute value ofx
.
There are 2 types of operations that you can perform any number of times:
- Decrease the value of any element of
arr
to a smaller positive integer. - Rearrange the elements of
arr
to be in any order.
Return the maximum possible value of an element in arr
after performing the operations to satisfy the conditions.
Example 1:
Input: arr = [2,2,1,2,1] Output: 2 Explanation: We can satisfy the conditions by rearrangingarr
so it becomes[1,2,2,2,1]
. The largest element inarr
is 2.
Example 2:
Input: arr = [100,1,1000] Output: 3 Explanation: One possible way to satisfy the conditions is by doing the following: 1. Rearrangearr
so it becomes[1,100,1000]
. 2. Decrease the value of the second element to 2. 3. Decrease the value of the third element to 3. Nowarr = [1,2,3]
, whichsatisfies the conditions. The largest element in
arr is 3.
Example 3:
Input: arr = [1,2,3,4,5] Output: 5 Explanation: The array already satisfies the conditions, and the largest element is 5.
Constraints:
1 <= arr.length <= 105
1 <= arr[i] <= 109
Solutions
Solution 1: Sorting + Greedy Algorithm
First, we sort the array and then set the first element of the array to $1$.
Next, we start traversing the array from the second element. If the difference between the current element and the previous one is more than $1$, we greedily reduce the current element to the previous element plus $1$.
Finally, we return the maximum element in the array.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Where $n$ is the length of the array.
-
class Solution { public int maximumElementAfterDecrementingAndRearranging(int[] arr) { Arrays.sort(arr); arr[0] = 1; int ans = 1; for (int i = 1; i < arr.length; ++i) { int d = Math.max(0, arr[i] - arr[i - 1] - 1); arr[i] -= d; ans = Math.max(ans, arr[i]); } return ans; } }
-
class Solution { public: int maximumElementAfterDecrementingAndRearranging(vector<int>& arr) { sort(arr.begin(), arr.end()); arr[0] = 1; int ans = 1; for (int i = 1; i < arr.size(); ++i) { int d = max(0, arr[i] - arr[i - 1] - 1); arr[i] -= d; ans = max(ans, arr[i]); } return ans; } };
-
class Solution: def maximumElementAfterDecrementingAndRearranging(self, arr: List[int]) -> int: arr.sort() arr[0] = 1 for i in range(1, len(arr)): d = max(0, arr[i] - arr[i - 1] - 1) arr[i] -= d return max(arr)
-
func maximumElementAfterDecrementingAndRearranging(arr []int) int { sort.Ints(arr) ans := 1 arr[0] = 1 for i := 1; i < len(arr); i++ { d := max(0, arr[i]-arr[i-1]-1) arr[i] -= d ans = max(ans, arr[i]) } return ans }
-
function maximumElementAfterDecrementingAndRearranging(arr: number[]): number { arr.sort((a, b) => a - b); arr[0] = 1; let ans = 1; for (let i = 1; i < arr.length; ++i) { const d = Math.max(0, arr[i] - arr[i - 1] - 1); arr[i] -= d; ans = Math.max(ans, arr[i]); } return ans; }
-
public class Solution { public int MaximumElementAfterDecrementingAndRearranging(int[] arr) { Array.Sort(arr); int n = arr.Length; arr[0] = 1; for (int i = 1; i < n; ++i) { arr[i] = Math.Min(arr[i], arr[i - 1] + 1); } return arr[n - 1]; } }