Welcome to Subscribe On Youtube

1825. Finding MK Average

Description

You are given two integers, m and k, and a stream of integers. You are tasked to implement a data structure that calculates the MKAverage for the stream.

The MKAverage can be calculated using these steps:

  1. If the number of the elements in the stream is less than m you should consider the MKAverage to be -1. Otherwise, copy the last m elements of the stream to a separate container.
  2. Remove the smallest k elements and the largest k elements from the container.
  3. Calculate the average value for the rest of the elements rounded down to the nearest integer.

Implement the MKAverage class:

  • MKAverage(int m, int k) Initializes the MKAverage object with an empty stream and the two integers m and k.
  • void addElement(int num) Inserts a new element num into the stream.
  • int calculateMKAverage() Calculates and returns the MKAverage for the current stream rounded down to the nearest integer.

 

Example 1:

Input
["MKAverage", "addElement", "addElement", "calculateMKAverage", "addElement", "calculateMKAverage", "addElement", "addElement", "addElement", "calculateMKAverage"]
[[3, 1], [3], [1], [], [10], [], [5], [5], [5], []]
Output
[null, null, null, -1, null, 3, null, null, null, 5]

Explanation
MKAverage obj = new MKAverage(3, 1); 
obj.addElement(3);        // current elements are [3]
obj.addElement(1);        // current elements are [3,1]
obj.calculateMKAverage(); // return -1, because m = 3 and only 2 elements exist.
obj.addElement(10);       // current elements are [3,1,10]
obj.calculateMKAverage(); // The last 3 elements are [3,1,10].
                          // After removing smallest and largest 1 element the container will be [3].
                          // The average of [3] equals 3/1 = 3, return 3
obj.addElement(5);        // current elements are [3,1,10,5]
obj.addElement(5);        // current elements are [3,1,10,5,5]
obj.addElement(5);        // current elements are [3,1,10,5,5,5]
obj.calculateMKAverage(); // The last 3 elements are [5,5,5].
                          // After removing smallest and largest 1 element the container will be [5].
                          // The average of [5] equals 5/1 = 5, return 5

 

Constraints:

  • 3 <= m <= 105
  • 1 <= k*2 < m
  • 1 <= num <= 105
  • At most 105 calls will be made to addElement and calculateMKAverage.

Solutions

Solution 1: Ordered Set + Queue

We can maintain the following data structures or variables:

  • A queue $q$ of length $m$, where the head of the queue is the earliest added element, and the tail of the queue is the most recently added element;
  • Three ordered sets, namely $lo$, $mid$, $hi$, where $lo$ and $hi$ store the smallest $k$ elements and the largest $k$ elements respectively, and $mid$ stores the remaining elements;
  • A variable $s$, maintaining the sum of all elements in $mid$;
  • Some programming languages (such as Java, Go) additionally maintain two variables $size1$ and $size3$, representing the number of elements in $lo$ and $hi$ respectively.

When calling the $addElement(num)$ function, perform the following operations in order:

  1. If $lo$ is empty, or $num \leq max(lo)$, then add $num$ to $lo$; otherwise if $hi$ is empty, or $num \geq min(hi)$, then add $num$ to $hi$; otherwise add $num$ to $mid$, and add the value of $num$ to $s$.
  2. Next, add $num$ to the queue $q$. If the length of the queue $q$ is greater than $m$ at this time, remove the head element $x$ from the queue $q$, then choose one of $lo$, $mid$ or $hi$ that contains $x$, and remove $x$ from this set. If the set is $mid$, subtract the value of $x$ from $s$.
  3. If the length of $lo$ is greater than $k$, then repeatedly remove the maximum value $max(lo)$ from $lo$, add $max(lo)$ to $mid$, and add the value of $max(lo)$ to $s$.
  4. If the length of $hi$ is greater than $k$, then repeatedly remove the minimum value $min(hi)$ from $hi$, add $min(hi)$ to $mid$, and add the value of $min(hi)$ to $s$.
  5. If the length of $lo$ is less than $k$ and $mid$ is not empty, then repeatedly remove the minimum value $min(mid)$ from $mid$, add $min(mid)$ to $lo$, and subtract the value of $min(mid)$ from $s$.
  6. If the length of $hi$ is less than $k$ and $mid$ is not empty, then repeatedly remove the maximum value $max(mid)$ from $mid$, add $max(mid)$ to $hi$, and subtract the value of $max(mid)$ from $s$.

When calling the $calculateMKAverage()$ function, if the length of $q$ is less than $m$, return $-1$, otherwise return $\frac{s}{m - 2k}$.

In terms of time complexity, each call to the $addElement(num)$ function has a time complexity of $O(\log m)$, and each call to the $calculateMKAverage()$ function has a time complexity of $O(1)$. The space complexity is $O(m)$.

  • class MKAverage {
    
        private int m, k;
        private long s;
        private int size1, size3;
        private Deque<Integer> q = new ArrayDeque<>();
        private TreeMap<Integer, Integer> lo = new TreeMap<>();
        private TreeMap<Integer, Integer> mid = new TreeMap<>();
        private TreeMap<Integer, Integer> hi = new TreeMap<>();
    
        public MKAverage(int m, int k) {
            this.m = m;
            this.k = k;
        }
    
        public void addElement(int num) {
            if (lo.isEmpty() || num <= lo.lastKey()) {
                lo.merge(num, 1, Integer::sum);
                ++size1;
            } else if (hi.isEmpty() || num >= hi.firstKey()) {
                hi.merge(num, 1, Integer::sum);
                ++size3;
            } else {
                mid.merge(num, 1, Integer::sum);
                s += num;
            }
            q.offer(num);
            if (q.size() > m) {
                int x = q.poll();
                if (lo.containsKey(x)) {
                    if (lo.merge(x, -1, Integer::sum) == 0) {
                        lo.remove(x);
                    }
                    --size1;
                } else if (hi.containsKey(x)) {
                    if (hi.merge(x, -1, Integer::sum) == 0) {
                        hi.remove(x);
                    }
                    --size3;
                } else {
                    if (mid.merge(x, -1, Integer::sum) == 0) {
                        mid.remove(x);
                    }
                    s -= x;
                }
            }
            for (; size1 > k; --size1) {
                int x = lo.lastKey();
                if (lo.merge(x, -1, Integer::sum) == 0) {
                    lo.remove(x);
                }
                mid.merge(x, 1, Integer::sum);
                s += x;
            }
            for (; size3 > k; --size3) {
                int x = hi.firstKey();
                if (hi.merge(x, -1, Integer::sum) == 0) {
                    hi.remove(x);
                }
                mid.merge(x, 1, Integer::sum);
                s += x;
            }
            for (; size1 < k && !mid.isEmpty(); ++size1) {
                int x = mid.firstKey();
                if (mid.merge(x, -1, Integer::sum) == 0) {
                    mid.remove(x);
                }
                s -= x;
                lo.merge(x, 1, Integer::sum);
            }
            for (; size3 < k && !mid.isEmpty(); ++size3) {
                int x = mid.lastKey();
                if (mid.merge(x, -1, Integer::sum) == 0) {
                    mid.remove(x);
                }
                s -= x;
                hi.merge(x, 1, Integer::sum);
            }
        }
    
        public int calculateMKAverage() {
            return q.size() < m ? -1 : (int) (s / (q.size() - k * 2));
        }
    }
    
    /**
     * Your MKAverage object will be instantiated and called as such:
     * MKAverage obj = new MKAverage(m, k);
     * obj.addElement(num);
     * int param_2 = obj.calculateMKAverage();
     */
    
  • class MKAverage {
    public:
        MKAverage(int m, int k) {
            this->m = m;
            this->k = k;
        }
    
        void addElement(int num) {
            if (lo.empty() || num <= *lo.rbegin()) {
                lo.insert(num);
            } else if (hi.empty() || num >= *hi.begin()) {
                hi.insert(num);
            } else {
                mid.insert(num);
                s += num;
            }
    
            q.push(num);
            if (q.size() > m) {
                int x = q.front();
                q.pop();
                if (lo.find(x) != lo.end()) {
                    lo.erase(lo.find(x));
                } else if (hi.find(x) != hi.end()) {
                    hi.erase(hi.find(x));
                } else {
                    mid.erase(mid.find(x));
                    s -= x;
                }
            }
            while (lo.size() > k) {
                int x = *lo.rbegin();
                lo.erase(prev(lo.end()));
                mid.insert(x);
                s += x;
            }
            while (hi.size() > k) {
                int x = *hi.begin();
                hi.erase(hi.begin());
                mid.insert(x);
                s += x;
            }
            while (lo.size() < k && mid.size()) {
                int x = *mid.begin();
                mid.erase(mid.begin());
                s -= x;
                lo.insert(x);
            }
            while (hi.size() < k && mid.size()) {
                int x = *mid.rbegin();
                mid.erase(prev(mid.end()));
                s -= x;
                hi.insert(x);
            }
        }
    
        int calculateMKAverage() {
            return q.size() < m ? -1 : s / (q.size() - k * 2);
        }
    
    private:
        int m, k;
        long long s = 0;
        queue<int> q;
        multiset<int> lo, mid, hi;
    };
    
    /**
     * Your MKAverage object will be instantiated and called as such:
     * MKAverage* obj = new MKAverage(m, k);
     * obj->addElement(num);
     * int param_2 = obj->calculateMKAverage();
     */
    
  • from sortedcontainers import SortedList
    
    
    class MKAverage:
        def __init__(self, m: int, k: int):
            self.m = m
            self.k = k
            self.s = 0
            self.q = deque()
            self.lo = SortedList()
            self.mid = SortedList()
            self.hi = SortedList()
    
        def addElement(self, num: int) -> None:
            if not self.lo or num <= self.lo[-1]:
                self.lo.add(num)
            elif not self.hi or num >= self.hi[0]:
                self.hi.add(num)
            else:
                self.mid.add(num)
                self.s += num
            self.q.append(num)
            if len(self.q) > self.m:
                x = self.q.popleft()
                if x in self.lo:
                    self.lo.remove(x)
                elif x in self.hi:
                    self.hi.remove(x)
                else:
                    self.mid.remove(x)
                    self.s -= x
            while len(self.lo) > self.k:
                x = self.lo.pop()
                self.mid.add(x)
                self.s += x
            while len(self.hi) > self.k:
                x = self.hi.pop(0)
                self.mid.add(x)
                self.s += x
            while len(self.lo) < self.k and self.mid:
                x = self.mid.pop(0)
                self.lo.add(x)
                self.s -= x
            while len(self.hi) < self.k and self.mid:
                x = self.mid.pop()
                self.hi.add(x)
                self.s -= x
    
        def calculateMKAverage(self) -> int:
            return -1 if len(self.q) < self.m else self.s // (self.m - 2 * self.k)
    
    
    # Your MKAverage object will be instantiated and called as such:
    # obj = MKAverage(m, k)
    # obj.addElement(num)
    # param_2 = obj.calculateMKAverage()
    
    
  • type MKAverage struct {
    	lo, mid, hi  *redblacktree.Tree
    	q            []int
    	m, k, s      int
    	size1, size3 int
    }
    
    func Constructor(m int, k int) MKAverage {
    	lo := redblacktree.NewWithIntComparator()
    	mid := redblacktree.NewWithIntComparator()
    	hi := redblacktree.NewWithIntComparator()
    	return MKAverage{lo, mid, hi, []int{}, m, k, 0, 0, 0}
    }
    
    func (this *MKAverage) AddElement(num int) {
    	merge := func(rbt *redblacktree.Tree, key, value int) {
    		if v, ok := rbt.Get(key); ok {
    			nxt := v.(int) + value
    			if nxt == 0 {
    				rbt.Remove(key)
    			} else {
    				rbt.Put(key, nxt)
    			}
    		} else {
    			rbt.Put(key, value)
    		}
    	}
    
    	if this.lo.Empty() || num <= this.lo.Right().Key.(int) {
    		merge(this.lo, num, 1)
    		this.size1++
    	} else if this.hi.Empty() || num >= this.hi.Left().Key.(int) {
    		merge(this.hi, num, 1)
    		this.size3++
    	} else {
    		merge(this.mid, num, 1)
    		this.s += num
    	}
    	this.q = append(this.q, num)
    	if len(this.q) > this.m {
    		x := this.q[0]
    		this.q = this.q[1:]
    		if _, ok := this.lo.Get(x); ok {
    			merge(this.lo, x, -1)
    			this.size1--
    		} else if _, ok := this.hi.Get(x); ok {
    			merge(this.hi, x, -1)
    			this.size3--
    		} else {
    			merge(this.mid, x, -1)
    			this.s -= x
    		}
    	}
    	for ; this.size1 > this.k; this.size1-- {
    		x := this.lo.Right().Key.(int)
    		merge(this.lo, x, -1)
    		merge(this.mid, x, 1)
    		this.s += x
    	}
    	for ; this.size3 > this.k; this.size3-- {
    		x := this.hi.Left().Key.(int)
    		merge(this.hi, x, -1)
    		merge(this.mid, x, 1)
    		this.s += x
    	}
    	for ; this.size1 < this.k && !this.mid.Empty(); this.size1++ {
    		x := this.mid.Left().Key.(int)
    		merge(this.mid, x, -1)
    		this.s -= x
    		merge(this.lo, x, 1)
    	}
    	for ; this.size3 < this.k && !this.mid.Empty(); this.size3++ {
    		x := this.mid.Right().Key.(int)
    		merge(this.mid, x, -1)
    		this.s -= x
    		merge(this.hi, x, 1)
    	}
    }
    
    func (this *MKAverage) CalculateMKAverage() int {
    	if len(this.q) < this.m {
    		return -1
    	}
    	return this.s / (this.m - 2*this.k)
    }
    
    /**
     * Your MKAverage object will be instantiated and called as such:
     * obj := Constructor(m, k);
     * obj.AddElement(num);
     * param_2 := obj.CalculateMKAverage();
     */
    

All Problems

All Solutions