Welcome to Subscribe On Youtube
1735. Count Ways to Make Array With Product
Description
You are given a 2D integer array, queries
. For each queries[i]
, where queries[i] = [ni, ki]
, find the number of different ways you can place positive integers into an array of size ni
such that the product of the integers is ki
. As the number of ways may be too large, the answer to the ith
query is the number of ways modulo 109 + 7
.
Return an integer array answer
where answer.length == queries.length
, and answer[i]
is the answer to the ith
query.
Example 1:
Input: queries = [[2,6],[5,1],[73,660]] Output: [4,1,50734910] Explanation: Each query is independent. [2,6]: There are 4 ways to fill an array of size 2 that multiply to 6: [1,6], [2,3], [3,2], [6,1]. [5,1]: There is 1 way to fill an array of size 5 that multiply to 1: [1,1,1,1,1]. [73,660]: There are 1050734917 ways to fill an array of size 73 that multiply to 660. 1050734917 modulo 109 + 7 = 50734910.
Example 2:
Input: queries = [[1,1],[2,2],[3,3],[4,4],[5,5]] Output: [1,2,3,10,5]
Constraints:
1 <= queries.length <= 104
1 <= ni, ki <= 104
Solutions
Solution 1: Prime Factorization + Combinatorial Mathematics
We can perform prime factorization on $k$, i.e., $k = p_1^{x_1} \times p_2^{x_2} \times \cdots \times p_m^{x_m}$, where $p_i$ is a prime number, and $x_i$ is the exponent of $p_i$. The problem is equivalent to: placing $x_1$ $p_1$s, $x_2$ $p_2$s, $\cdots$, $x_m$ $p_m$s into $n$ positions respectively, where a single position can be empty. The question is how many schemes are there.
According to combinatorial mathematics, there are two cases when we put $x$ balls into $n$ boxes:
If the box cannot be empty, the number of schemes is $C_{x-1}^{n-1}$. This is using the partition method, i.e., there are a total of $x$ balls, and we insert $n-1$ partitions at $x-1$ positions, thereby dividing the $x$ balls into $n$ groups.
If the box can be empty, we can add $n$ virtual balls, and then use the partition method, i.e., there are a total of $x+n$ balls, and we insert $n-1$ partitions at $x+n-1$ positions, thereby dividing the actual $x$ balls into $n$ groups and allowing the box to be empty. Therefore, the number of schemes is $C_{x+n-1}^{n-1}$.
Therefore, for each query $queries[i]$, we can first perform prime factorization on $k$ to get the exponents $x_1, x_2, \cdots, x_m$, then calculate $C_{x_1+n-1}^{n-1}, C_{x_2+n-1}^{n-1}, \cdots, C_{x_m+n-1}^{n-1}$, and finally multiply all the scheme numbers.
So, the problem is transformed into how to quickly calculate $C_m^n$. According to the formula $C_m^n = \frac{m!}{n!(m-n)!}$, we can pre-process $m!$, and then use the inverse element to quickly calculate $C_m^n$.
The time complexity is $O(K \times \log \log K + N + m \times \log K)$, and the space complexity is $O(N)$.
-
class Solution { private static final int N = 10020; private static final int MOD = (int) 1e9 + 7; private static final long[] F = new long[N]; private static final long[] G = new long[N]; private static final List<Integer>[] P = new List[N]; static { F[0] = 1; G[0] = 1; Arrays.setAll(P, k -> new ArrayList<>()); for (int i = 1; i < N; ++i) { F[i] = F[i - 1] * i % MOD; G[i] = qmi(F[i], MOD - 2, MOD); int x = i; for (int j = 2; j <= x / j; ++j) { if (x % j == 0) { int cnt = 0; while (x % j == 0) { ++cnt; x /= j; } P[i].add(cnt); } } if (x > 1) { P[i].add(1); } } } public static long qmi(long a, long k, long p) { long res = 1; while (k != 0) { if ((k & 1) == 1) { res = res * a % p; } k >>= 1; a = a * a % p; } return res; } public static long comb(int n, int k) { return (F[n] * G[k] % MOD) * G[n - k] % MOD; } public int[] waysToFillArray(int[][] queries) { int m = queries.length; int[] ans = new int[m]; for (int i = 0; i < m; ++i) { int n = queries[i][0], k = queries[i][1]; long t = 1; for (int x : P[k]) { t = t * comb(x + n - 1, n - 1) % MOD; } ans[i] = (int) t; } return ans; } }
-
int N = 10020; int MOD = 1e9 + 7; long f[10020]; long g[10020]; vector<int> p[10020]; long qmi(long a, long k, long p) { long res = 1; while (k != 0) { if ((k & 1) == 1) { res = res * a % p; } k >>= 1; a = a * a % p; } return res; } int init = []() { f[0] = 1; g[0] = 1; for (int i = 1; i < N; ++i) { f[i] = f[i - 1] * i % MOD; g[i] = qmi(f[i], MOD - 2, MOD); int x = i; for (int j = 2; j <= x / j; ++j) { if (x % j == 0) { int cnt = 0; while (x % j == 0) { ++cnt; x /= j; } p[i].push_back(cnt); } } if (x > 1) { p[i].push_back(1); } } return 0; }(); int comb(int n, int k) { return (f[n] * g[k] % MOD) * g[n - k] % MOD; } class Solution { public: vector<int> waysToFillArray(vector<vector<int>>& queries) { vector<int> ans; for (auto& q : queries) { int n = q[0], k = q[1]; long long t = 1; for (int x : p[k]) { t = t * comb(x + n - 1, n - 1) % MOD; } ans.push_back(t); } return ans; } };
-
N = 10020 MOD = 10**9 + 7 f = [1] * N g = [1] * N p = defaultdict(list) for i in range(1, N): f[i] = f[i - 1] * i % MOD g[i] = pow(f[i], MOD - 2, MOD) x = i j = 2 while j <= x // j: if x % j == 0: cnt = 0 while x % j == 0: cnt += 1 x //= j p[i].append(cnt) j += 1 if x > 1: p[i].append(1) def comb(n, k): return f[n] * g[k] * g[n - k] % MOD class Solution: def waysToFillArray(self, queries: List[List[int]]) -> List[int]: ans = [] for n, k in queries: t = 1 for x in p[k]: t = t * comb(x + n - 1, n - 1) % MOD ans.append(t) return ans
-
const n = 1e4 + 20 const mod = 1e9 + 7 var f = make([]int, n) var g = make([]int, n) var p = make([][]int, n) func qmi(a, k, p int) int { res := 1 for k != 0 { if k&1 == 1 { res = res * a % p } k >>= 1 a = a * a % p } return res } func init() { f[0], g[0] = 1, 1 for i := 1; i < n; i++ { f[i] = f[i-1] * i % mod g[i] = qmi(f[i], mod-2, mod) x := i for j := 2; j <= x/j; j++ { if x%j == 0 { cnt := 0 for x%j == 0 { cnt++ x /= j } p[i] = append(p[i], cnt) } } if x > 1 { p[i] = append(p[i], 1) } } } func comb(n, k int) int { return (f[n] * g[k] % mod) * g[n-k] % mod } func waysToFillArray(queries [][]int) (ans []int) { for _, q := range queries { n, k := q[0], q[1] t := 1 for _, x := range p[k] { t = t * comb(x+n-1, n-1) % mod } ans = append(ans, t) } return }