Welcome to Subscribe On Youtube
1718. Construct the Lexicographically Largest Valid Sequence
Description
Given an integer n
, find a sequence that satisfies all of the following:
- The integer
1
occurs once in the sequence. - Each integer between
2
andn
occurs twice in the sequence. - For every integer
i
between2
andn
, the distance between the two occurrences ofi
is exactlyi
.
The distance between two numbers on the sequence, a[i]
and a[j]
, is the absolute difference of their indices, |j - i|
.
Return the lexicographically largest sequence. It is guaranteed that under the given constraints, there is always a solution.
A sequence a
is lexicographically larger than a sequence b
(of the same length) if in the first position where a
and b
differ, sequence a
has a number greater than the corresponding number in b
. For example, [0,1,9,0]
is lexicographically larger than [0,1,5,6]
because the first position they differ is at the third number, and 9
is greater than 5
.
Example 1:
Input: n = 3 Output: [3,1,2,3,2] Explanation: [2,3,2,1,3] is also a valid sequence, but [3,1,2,3,2] is the lexicographically largest valid sequence.
Example 2:
Input: n = 5 Output: [5,3,1,4,3,5,2,4,2]
Constraints:
1 <= n <= 20
Solutions
DFS.
-
class Solution { private int[] path; private int[] cnt; private int n; public int[] constructDistancedSequence(int n) { this.n = n; path = new int[n * 2]; cnt = new int[n * 2]; Arrays.fill(cnt, 2); cnt[1] = 1; dfs(1); int[] ans = new int[n * 2 - 1]; for (int i = 0; i < ans.length; ++i) { ans[i] = path[i + 1]; } return ans; } private boolean dfs(int u) { if (u == n * 2) { return true; } if (path[u] > 0) { return dfs(u + 1); } for (int i = n; i > 1; --i) { if (cnt[i] > 0 && u + i < n * 2 && path[u + i] == 0) { cnt[i] = 0; path[u] = i; path[u + i] = i; if (dfs(u + 1)) { return true; } cnt[i] = 2; path[u] = 0; path[u + i] = 0; } } if (cnt[1] > 0) { path[u] = 1; cnt[1] = 0; if (dfs(u + 1)) { return true; } cnt[1] = 1; path[u] = 0; } return false; } }
-
class Solution { public: int n; vector<int> cnt, path; vector<int> constructDistancedSequence(int _n) { n = _n; cnt.resize(n * 2, 2); path.resize(n * 2); cnt[1] = 1; dfs(1); vector<int> ans; for (int i = 1; i < n * 2; ++i) ans.push_back(path[i]); return ans; } bool dfs(int u) { if (u == n * 2) return 1; if (path[u]) return dfs(u + 1); for (int i = n; i > 1; --i) { if (cnt[i] && u + i < n * 2 && !path[u + i]) { path[u] = path[u + i] = i; cnt[i] = 0; if (dfs(u + 1)) return 1; cnt[i] = 2; path[u] = path[u + i] = 0; } } if (cnt[1]) { path[u] = 1; cnt[1] = 0; if (dfs(u + 1)) return 1; cnt[1] = 1; path[u] = 0; } return 0; } };
-
class Solution: def constructDistancedSequence(self, n: int) -> List[int]: def dfs(u): if u == n * 2: return True if path[u]: return dfs(u + 1) for i in range(n, 1, -1): if cnt[i] and u + i < n * 2 and path[u + i] == 0: cnt[i] = 0 path[u] = path[u + i] = i if dfs(u + 1): return True path[u] = path[u + i] = 0 cnt[i] = 2 if cnt[1]: cnt[1], path[u] = 0, 1 if dfs(u + 1): return True path[u], cnt[1] = 0, 1 return False path = [0] * (n * 2) cnt = [2] * (n * 2) cnt[1] = 1 dfs(1) return path[1:]
-
func constructDistancedSequence(n int) []int { path := make([]int, n*2) cnt := make([]int, n*2) for i := range cnt { cnt[i] = 2 } cnt[1] = 1 var dfs func(u int) bool dfs = func(u int) bool { if u == n*2 { return true } if path[u] > 0 { return dfs(u + 1) } for i := n; i > 1; i-- { if cnt[i] > 0 && u+i < n*2 && path[u+i] == 0 { cnt[i] = 0 path[u], path[u+i] = i, i if dfs(u + 1) { return true } cnt[i] = 2 path[u], path[u+i] = 0, 0 } } if cnt[1] > 0 { cnt[1] = 0 path[u] = 1 if dfs(u + 1) { return true } cnt[1] = 1 path[u] = 0 } return false } dfs(1) return path[1:] }