Welcome to Subscribe On Youtube

1697. Checking Existence of Edge Length Limited Paths

Description

An undirected graph of n nodes is defined by edgeList, where edgeList[i] = [ui, vi, disi] denotes an edge between nodes ui and vi with distance disi. Note that there may be multiple edges between two nodes.

Given an array queries, where queries[j] = [pj, qj, limitj], your task is to determine for each queries[j] whether there is a path between pj and qj such that each edge on the path has a distance strictly less than limitj .

Return a boolean array answer, where answer.length == queries.length and the jth value of answer is true if there is a path for queries[j] is true, and false otherwise.

 

Example 1:

Input: n = 3, edgeList = [[0,1,2],[1,2,4],[2,0,8],[1,0,16]], queries = [[0,1,2],[0,2,5]]
Output: [false,true]
Explanation: The above figure shows the given graph. Note that there are two overlapping edges between 0 and 1 with distances 2 and 16.
For the first query, between 0 and 1 there is no path where each distance is less than 2, thus we return false for this query.
For the second query, there is a path (0 -> 1 -> 2) of two edges with distances less than 5, thus we return true for this query.

Example 2:

Input: n = 5, edgeList = [[0,1,10],[1,2,5],[2,3,9],[3,4,13]], queries = [[0,4,14],[1,4,13]]
Output: [true,false]
Explanation: The above figure shows the given graph.

 

Constraints:

  • 2 <= n <= 105
  • 1 <= edgeList.length, queries.length <= 105
  • edgeList[i].length == 3
  • queries[j].length == 3
  • 0 <= ui, vi, pj, qj <= n - 1
  • ui != vi
  • pj != qj
  • 1 <= disi, limitj <= 109
  • There may be multiple edges between two nodes.

Solutions

Union find.

  • class Solution {
        private int[] p;
    
        public boolean[] distanceLimitedPathsExist(int n, int[][] edgeList, int[][] queries) {
            p = new int[n];
            for (int i = 0; i < n; ++i) {
                p[i] = i;
            }
            Arrays.sort(edgeList, (a, b) -> a[2] - b[2]);
            int m = queries.length;
            boolean[] ans = new boolean[m];
            Integer[] qid = new Integer[m];
            for (int i = 0; i < m; ++i) {
                qid[i] = i;
            }
            Arrays.sort(qid, (i, j) -> queries[i][2] - queries[j][2]);
            int j = 0;
            for (int i : qid) {
                int a = queries[i][0], b = queries[i][1], limit = queries[i][2];
                while (j < edgeList.length && edgeList[j][2] < limit) {
                    int u = edgeList[j][0], v = edgeList[j][1];
                    p[find(u)] = find(v);
                    ++j;
                }
                ans[i] = find(a) == find(b);
            }
            return ans;
        }
    
        private int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    }
    
  • class Solution {
    public:
        vector<bool> distanceLimitedPathsExist(int n, vector<vector<int>>& edgeList, vector<vector<int>>& queries) {
            vector<int> p(n);
            iota(p.begin(), p.end(), 0);
            sort(edgeList.begin(), edgeList.end(), [](auto& a, auto& b) { return a[2] < b[2]; });
            function<int(int)> find = [&](int x) -> int {
                if (p[x] != x) p[x] = find(p[x]);
                return p[x];
            };
            int m = queries.size();
            vector<bool> ans(m);
            vector<int> qid(m);
            iota(qid.begin(), qid.end(), 0);
            sort(qid.begin(), qid.end(), [&](int i, int j) { return queries[i][2] < queries[j][2]; });
            int j = 0;
            for (int i : qid) {
                int a = queries[i][0], b = queries[i][1], limit = queries[i][2];
                while (j < edgeList.size() && edgeList[j][2] < limit) {
                    int u = edgeList[j][0], v = edgeList[j][1];
                    p[find(u)] = find(v);
                    ++j;
                }
                ans[i] = find(a) == find(b);
            }
            return ans;
        }
    };
    
  • class Solution:
        def distanceLimitedPathsExist(
            self, n: int, edgeList: List[List[int]], queries: List[List[int]]
        ) -> List[bool]:
            def find(x):
                if p[x] != x:
                    p[x] = find(p[x])
                return p[x]
    
            p = list(range(n))
            edgeList.sort(key=lambda x: x[2])
            j = 0
            ans = [False] * len(queries)
            for i, (a, b, limit) in sorted(enumerate(queries), key=lambda x: x[1][2]):
                while j < len(edgeList) and edgeList[j][2] < limit:
                    u, v, _ = edgeList[j]
                    p[find(u)] = find(v)
                    j += 1
                ans[i] = find(a) == find(b)
            return ans
    
    
  • func distanceLimitedPathsExist(n int, edgeList [][]int, queries [][]int) []bool {
    	p := make([]int, n)
    	for i := range p {
    		p[i] = i
    	}
    	sort.Slice(edgeList, func(i, j int) bool { return edgeList[i][2] < edgeList[j][2] })
    	var find func(int) int
    	find = func(x int) int {
    		if p[x] != x {
    			p[x] = find(p[x])
    		}
    		return p[x]
    	}
    	m := len(queries)
    	qid := make([]int, m)
    	ans := make([]bool, m)
    	for i := range qid {
    		qid[i] = i
    	}
    	sort.Slice(qid, func(i, j int) bool { return queries[qid[i]][2] < queries[qid[j]][2] })
    	j := 0
    	for _, i := range qid {
    		a, b, limit := queries[i][0], queries[i][1], queries[i][2]
    		for j < len(edgeList) && edgeList[j][2] < limit {
    			u, v := edgeList[j][0], edgeList[j][1]
    			p[find(u)] = find(v)
    			j++
    		}
    		ans[i] = find(a) == find(b)
    	}
    	return ans
    }
    
  • impl Solution {
        #[allow(dead_code)]
        pub fn distance_limited_paths_exist(
            n: i32,
            edge_list: Vec<Vec<i32>>,
            queries: Vec<Vec<i32>>
        ) -> Vec<bool> {
            let mut disjoint_set: Vec<usize> = vec![0; n as usize];
            let mut ans_vec: Vec<bool> = vec![false; queries.len()];
            let mut q_vec: Vec<usize> = vec![0; queries.len()];
    
            // Initialize the set
            for i in 0..n {
                disjoint_set[i as usize] = i as usize;
            }
    
            // Initialize the q_vec
            for i in 0..queries.len() {
                q_vec[i] = i;
            }
    
            // Sort the q_vec based on the query limit, from the lowest to highest
            q_vec.sort_by(|i, j| queries[*i][2].cmp(&queries[*j][2]));
    
            // Sort the edge_list based on the edge weight, from the lowest to highest
            let mut edge_list = edge_list.clone();
            edge_list.sort_by(|i, j| i[2].cmp(&j[2]));
    
            let mut edge_idx: usize = 0;
            for q_idx in &q_vec {
                let s = queries[*q_idx][0] as usize;
                let d = queries[*q_idx][1] as usize;
                let limit = queries[*q_idx][2];
                // Construct the disjoint set
                while edge_idx < edge_list.len() && edge_list[edge_idx][2] < limit {
                    Solution::union(
                        edge_list[edge_idx][0] as usize,
                        edge_list[edge_idx][1] as usize,
                        &mut disjoint_set
                    );
                    edge_idx += 1;
                }
                // If the parents of s & d are the same, this query should be `true`
                // Otherwise, the current query is `false`
                ans_vec[*q_idx] = Solution::check_valid(s, d, &mut disjoint_set);
            }
    
            ans_vec
        }
    
        #[allow(dead_code)]
        pub fn find(x: usize, d_set: &mut Vec<usize>) -> usize {
            if d_set[x] != x {
                d_set[x] = Solution::find(d_set[x], d_set);
            }
            return d_set[x];
        }
    
        #[allow(dead_code)]
        pub fn union(s: usize, d: usize, d_set: &mut Vec<usize>) {
            let p_s = Solution::find(s, d_set);
            let p_d = Solution::find(d, d_set);
            d_set[p_s] = p_d;
        }
    
        #[allow(dead_code)]
        pub fn check_valid(s: usize, d: usize, d_set: &mut Vec<usize>) -> bool {
            let p_s = Solution::find(s, d_set);
            let p_d = Solution::find(d, d_set);
            p_s == p_d
        }
    }
    
    

All Problems

All Solutions