Welcome to Subscribe On Youtube

1696. Jump Game VI

Description

You are given a 0-indexed integer array nums and an integer k.

You are initially standing at index 0. In one move, you can jump at most k steps forward without going outside the boundaries of the array. That is, you can jump from index i to any index in the range [i + 1, min(n - 1, i + k)] inclusive.

You want to reach the last index of the array (index n - 1). Your score is the sum of all nums[j] for each index j you visited in the array.

Return the maximum score you can get.

 

Example 1:

Input: nums = [1,-1,-2,4,-7,3], k = 2
Output: 7
Explanation: You can choose your jumps forming the subsequence [1,-1,4,3] (underlined above). The sum is 7.

Example 2:

Input: nums = [10,-5,-2,4,0,3], k = 3
Output: 17
Explanation: You can choose your jumps forming the subsequence [10,4,3] (underlined above). The sum is 17.

Example 3:

Input: nums = [1,-5,-20,4,-1,3,-6,-3], k = 2
Output: 0

 

Constraints:

  • 1 <= nums.length, k <= 105
  • -104 <= nums[i] <= 104

Solutions

Solution 1: Dynamic Programming + Monotonic Queue Optimization

We define $f[i]$ as the maximum score when reaching index $i$. The value of $f[i]$ can be transferred from $f[j]$, where $j$ satisfies $i - k \leq j \leq i - 1$. Therefore, we can use dynamic programming to solve this problem.

The state transition equation is:

\[f[i] = \max_{j \in [i - k, i - 1]} f[j] + nums[i]\]

We can use a monotonic queue to optimize the state transition equation. Specifically, we maintain a monotonically decreasing queue, which stores the index $j$, and the $f[j]$ values corresponding to the indices in the queue are monotonically decreasing. When performing state transition, we only need to take out the index $j$ at the front of the queue to get the maximum value of $f[j]$, and then update the value of $f[i]$ to $f[j] + nums[i]$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.

  • class Solution {
        public int maxResult(int[] nums, int k) {
            int n = nums.length;
            int[] f = new int[n];
            Deque<Integer> q = new ArrayDeque<>();
            q.offer(0);
            for (int i = 0; i < n; ++i) {
                if (i - q.peekFirst() > k) {
                    q.pollFirst();
                }
                f[i] = nums[i] + f[q.peekFirst()];
                while (!q.isEmpty() && f[q.peekLast()] <= f[i]) {
                    q.pollLast();
                }
                q.offerLast(i);
            }
            return f[n - 1];
        }
    }
    
  • class Solution {
    public:
        int maxResult(vector<int>& nums, int k) {
            int n = nums.size();
            int f[n];
            f[0] = 0;
            deque<int> q = {0};
            for (int i = 0; i < n; ++i) {
                if (i - q.front() > k) q.pop_front();
                f[i] = nums[i] + f[q.front()];
                while (!q.empty() && f[q.back()] <= f[i]) q.pop_back();
                q.push_back(i);
            }
            return f[n - 1];
        }
    };
    
  • class Solution:
        def maxResult(self, nums: List[int], k: int) -> int:
            n = len(nums)
            f = [0] * n
            q = deque([0])
            for i in range(n):
                if i - q[0] > k:
                    q.popleft()
                f[i] = nums[i] + f[q[0]]
                while q and f[q[-1]] <= f[i]:
                    q.pop()
                q.append(i)
            return f[-1]
    
    
  • func maxResult(nums []int, k int) int {
    	n := len(nums)
    	f := make([]int, n)
    	q := []int{0}
    	for i, v := range nums {
    		if i-q[0] > k {
    			q = q[1:]
    		}
    		f[i] = v + f[q[0]]
    		for len(q) > 0 && f[q[len(q)-1]] <= f[i] {
    			q = q[:len(q)-1]
    		}
    		q = append(q, i)
    	}
    	return f[n-1]
    }
    
  • function maxResult(nums: number[], k: number): number {
        const n = nums.length;
        const f: number[] = Array(n).fill(0);
        const q = new Deque<number>();
        q.pushBack(0);
        for (let i = 0; i < n; ++i) {
            if (i - q.frontValue()! > k) {
                q.popFront();
            }
            f[i] = nums[i] + f[q.frontValue()!];
            while (!q.isEmpty() && f[i] >= f[q.backValue()!]) {
                q.popBack();
            }
            q.pushBack(i);
        }
        return f[n - 1];
    }
    
    class Node<T> {
        value: T;
        next: Node<T> | null;
        prev: Node<T> | null;
    
        constructor(value: T) {
            this.value = value;
            this.next = null;
            this.prev = null;
        }
    }
    
    class Deque<T> {
        private front: Node<T> | null;
        private back: Node<T> | null;
        private size: number;
    
        constructor() {
            this.front = null;
            this.back = null;
            this.size = 0;
        }
    
        pushFront(val: T): void {
            const newNode = new Node(val);
            if (this.isEmpty()) {
                this.front = newNode;
                this.back = newNode;
            } else {
                newNode.next = this.front;
                this.front!.prev = newNode;
                this.front = newNode;
            }
            this.size++;
        }
    
        pushBack(val: T): void {
            const newNode = new Node(val);
            if (this.isEmpty()) {
                this.front = newNode;
                this.back = newNode;
            } else {
                newNode.prev = this.back;
                this.back!.next = newNode;
                this.back = newNode;
            }
            this.size++;
        }
    
        popFront(): T | undefined {
            if (this.isEmpty()) {
                return undefined;
            }
            const value = this.front!.value;
            this.front = this.front!.next;
            if (this.front !== null) {
                this.front.prev = null;
            } else {
                this.back = null;
            }
            this.size--;
            return value;
        }
    
        popBack(): T | undefined {
            if (this.isEmpty()) {
                return undefined;
            }
            const value = this.back!.value;
            this.back = this.back!.prev;
            if (this.back !== null) {
                this.back.next = null;
            } else {
                this.front = null;
            }
            this.size--;
            return value;
        }
    
        frontValue(): T | undefined {
            return this.front?.value;
        }
    
        backValue(): T | undefined {
            return this.back?.value;
        }
    
        getSize(): number {
            return this.size;
        }
    
        isEmpty(): boolean {
            return this.size === 0;
        }
    }
    
    

All Problems

All Solutions