Welcome to Subscribe On Youtube

1681. Minimum Incompatibility

Description

You are given an integer array nums​​​ and an integer k. You are asked to distribute this array into k subsets of equal size such that there are no two equal elements in the same subset.

A subset's incompatibility is the difference between the maximum and minimum elements in that array.

Return the minimum possible sum of incompatibilities of the k subsets after distributing the array optimally, or return -1 if it is not possible.

A subset is a group integers that appear in the array with no particular order.

 

Example 1:

Input: nums = [1,2,1,4], k = 2
Output: 4
Explanation: The optimal distribution of subsets is [1,2] and [1,4].
The incompatibility is (2-1) + (4-1) = 4.
Note that [1,1] and [2,4] would result in a smaller sum, but the first subset contains 2 equal elements.

Example 2:

Input: nums = [6,3,8,1,3,1,2,2], k = 4
Output: 6
Explanation: The optimal distribution of subsets is [1,2], [2,3], [6,8], and [1,3].
The incompatibility is (2-1) + (3-2) + (8-6) + (3-1) = 6.

Example 3:

Input: nums = [5,3,3,6,3,3], k = 3
Output: -1
Explanation: It is impossible to distribute nums into 3 subsets where no two elements are equal in the same subset.

 

Constraints:

  • 1 <= k <= nums.length <= 16
  • nums.length is divisible by k
  • 1 <= nums[i] <= nums.length

Solutions

Solution 1: Preprocessing + State Compression + Dynamic Programming

Let’s assume that the size of each subset after partitioning is $m$, so $m=\frac{n}{k}$, where $n$ is the length of the array.

We can enumerate all subsets $i$, where $i \in [0, 2^n)$, if the binary representation of subset $i$ has $m$ ones, and the elements in subset $i$ are not repeated, then we can calculate the incompatibility of subset $i$, denoted as $g[i]$, i.e., $g[i]=\max_{j \in i} {nums[j]} - \min_{j \in i} {nums[j]}$.

Next, we can use dynamic programming to solve.

We define $f[i]$ as the minimum sum of incompatibilities when the current partitioned subset state is $i$. Initially, $f[0]=0$, which means no elements are partitioned into the subset, and the rest $f[i]=+\infty$.

For state $i$, we find all undivided and non-repeated elements, represented by a state $mask$. If the number of elements in state $mask$ is greater than or equal to $m$, then we enumerate all subsets $j$ of $mask$, and satisfy $j \subset mask$, then $f[i \cup j]=\min {f[i \cup j], f[i]+g[j]}$.

Finally, if $f[2^n-1]=+\infty$, it means that it cannot be partitioned into $k$ subsets, return $-1$, otherwise return $f[2^n-1]$.

The time complexity is $O(3^n)$, and the space complexity is $O(2^n)$. Here, $n$ is the length of the array.

  • class Solution {
        public int minimumIncompatibility(int[] nums, int k) {
            int n = nums.length;
            int m = n / k;
            int[] g = new int[1 << n];
            Arrays.fill(g, -1);
            for (int i = 1; i < 1 << n; ++i) {
                if (Integer.bitCount(i) != m) {
                    continue;
                }
                Set<Integer> s = new HashSet<>();
                int mi = 20, mx = 0;
                for (int j = 0; j < n; ++j) {
                    if ((i >> j & 1) == 1) {
                        if (!s.add(nums[j])) {
                            break;
                        }
                        mi = Math.min(mi, nums[j]);
                        mx = Math.max(mx, nums[j]);
                    }
                }
                if (s.size() == m) {
                    g[i] = mx - mi;
                }
            }
            int[] f = new int[1 << n];
            final int inf = 1 << 30;
            Arrays.fill(f, inf);
            f[0] = 0;
            for (int i = 0; i < 1 << n; ++i) {
                if (f[i] == inf) {
                    continue;
                }
                Set<Integer> s = new HashSet<>();
                int mask = 0;
                for (int j = 0; j < n; ++j) {
                    if ((i >> j & 1) == 0 && !s.contains(nums[j])) {
                        s.add(nums[j]);
                        mask |= 1 << j;
                    }
                }
                if (s.size() < m) {
                    continue;
                }
                for (int j = mask; j > 0; j = (j - 1) & mask) {
                    if (g[j] != -1) {
                        f[i | j] = Math.min(f[i | j], f[i] + g[j]);
                    }
                }
            }
            return f[(1 << n) - 1] == inf ? -1 : f[(1 << n) - 1];
        }
    }
    
  • class Solution {
    public:
        int minimumIncompatibility(vector<int>& nums, int k) {
            int n = nums.size();
            int m = n / k;
            int g[1 << n];
            memset(g, -1, sizeof(g));
            for (int i = 1; i < 1 << n; ++i) {
                if (__builtin_popcount(i) != m) {
                    continue;
                }
                unordered_set<int> s;
                int mi = 20, mx = 0;
                for (int j = 0; j < n; ++j) {
                    if (i >> j & 1) {
                        if (s.count(nums[j])) {
                            break;
                        }
                        s.insert(nums[j]);
                        mi = min(mi, nums[j]);
                        mx = max(mx, nums[j]);
                    }
                }
                if (s.size() == m) {
                    g[i] = mx - mi;
                }
            }
            int f[1 << n];
            memset(f, 0x3f, sizeof(f));
            f[0] = 0;
            for (int i = 0; i < 1 << n; ++i) {
                if (f[i] == 0x3f3f3f3f) {
                    continue;
                }
                unordered_set<int> s;
                int mask = 0;
                for (int j = 0; j < n; ++j) {
                    if ((i >> j & 1) == 0 && !s.count(nums[j])) {
                        s.insert(nums[j]);
                        mask |= 1 << j;
                    }
                }
                if (s.size() < m) {
                    continue;
                }
                for (int j = mask; j; j = (j - 1) & mask) {
                    if (g[j] != -1) {
                        f[i | j] = min(f[i | j], f[i] + g[j]);
                    }
                }
            }
            return f[(1 << n) - 1] == 0x3f3f3f3f ? -1 : f[(1 << n) - 1];
        }
    };
    
  • class Solution:
        def minimumIncompatibility(self, nums: List[int], k: int) -> int:
            n = len(nums)
            m = n // k
            g = [-1] * (1 << n)
            for i in range(1, 1 << n):
                if i.bit_count() != m:
                    continue
                s = set()
                mi, mx = 20, 0
                for j, x in enumerate(nums):
                    if i >> j & 1:
                        if x in s:
                            break
                        s.add(x)
                        mi = min(mi, x)
                        mx = max(mx, x)
                if len(s) == m:
                    g[i] = mx - mi
            f = [inf] * (1 << n)
            f[0] = 0
            for i in range(1 << n):
                if f[i] == inf:
                    continue
                s = set()
                mask = 0
                for j, x in enumerate(nums):
                    if (i >> j & 1) == 0 and x not in s:
                        s.add(x)
                        mask |= 1 << j
                if len(s) < m:
                    continue
                j = mask
                while j:
                    if g[j] != -1:
                        f[i | j] = min(f[i | j], f[i] + g[j])
                    j = (j - 1) & mask
            return f[-1] if f[-1] != inf else -1
    
    
  • func minimumIncompatibility(nums []int, k int) int {
    	n := len(nums)
    	m := n / k
    	const inf = 1 << 30
    	f := make([]int, 1<<n)
    	g := make([]int, 1<<n)
    	for i := range g {
    		f[i] = inf
    		g[i] = -1
    	}
    	for i := 1; i < 1<<n; i++ {
    		if bits.OnesCount(uint(i)) != m {
    			continue
    		}
    		s := map[int]struct{}{}
    		mi, mx := 20, 0
    		for j, x := range nums {
    			if i>>j&1 == 1 {
    				if _, ok := s[x]; ok {
    					break
    				}
    				s[x] = struct{}{}
    				mi = min(mi, x)
    				mx = max(mx, x)
    			}
    		}
    		if len(s) == m {
    			g[i] = mx - mi
    		}
    	}
    	f[0] = 0
    	for i := 0; i < 1<<n; i++ {
    		if f[i] == inf {
    			continue
    		}
    		s := map[int]struct{}{}
    		mask := 0
    		for j, x := range nums {
    			if _, ok := s[x]; !ok && i>>j&1 == 0 {
    				s[x] = struct{}{}
    				mask |= 1 << j
    			}
    		}
    		if len(s) < m {
    			continue
    		}
    		for j := mask; j > 0; j = (j - 1) & mask {
    			if g[j] != -1 {
    				f[i|j] = min(f[i|j], f[i]+g[j])
    			}
    		}
    	}
    	if f[1<<n-1] == inf {
    		return -1
    	}
    	return f[1<<n-1]
    }
    
  • function minimumIncompatibility(nums: number[], k: number): number {
        const n = nums.length;
        const m = Math.floor(n / k);
        const g: number[] = Array(1 << n).fill(-1);
        for (let i = 1; i < 1 << n; ++i) {
            if (bitCount(i) !== m) {
                continue;
            }
            const s: Set<number> = new Set();
            let [mi, mx] = [20, 0];
            for (let j = 0; j < n; ++j) {
                if ((i >> j) & 1) {
                    if (s.has(nums[j])) {
                        break;
                    }
                    s.add(nums[j]);
                    mi = Math.min(mi, nums[j]);
                    mx = Math.max(mx, nums[j]);
                }
            }
            if (s.size === m) {
                g[i] = mx - mi;
            }
        }
        const inf = 1e9;
        const f: number[] = Array(1 << n).fill(inf);
        f[0] = 0;
        for (let i = 0; i < 1 << n; ++i) {
            if (f[i] === inf) {
                continue;
            }
            const s: Set<number> = new Set();
            let mask = 0;
            for (let j = 0; j < n; ++j) {
                if (((i >> j) & 1) === 0 && !s.has(nums[j])) {
                    s.add(nums[j]);
                    mask |= 1 << j;
                }
            }
            if (s.size < m) {
                continue;
            }
            for (let j = mask; j; j = (j - 1) & mask) {
                if (g[j] !== -1) {
                    f[i | j] = Math.min(f[i | j], f[i] + g[j]);
                }
            }
        }
        return f[(1 << n) - 1] === inf ? -1 : f[(1 << n) - 1];
    }
    
    function bitCount(i: number): number {
        i = i - ((i >>> 1) & 0x55555555);
        i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
        i = (i + (i >>> 4)) & 0x0f0f0f0f;
        i = i + (i >>> 8);
        i = i + (i >>> 16);
        return i & 0x3f;
    }
    
    
  • public class Solution {
        public int MinimumIncompatibility(int[] nums, int k) {
            int n = nums.Length;
            int m = n / k;
            int[] g = new int[1 << n];
            Array.Fill(g, -1);
            for (int i = 1; i < 1 << n; ++i) {
                if (bitCount(i) != m) {
                    continue;
                }
                HashSet<int> s = new();
                int mi = 20, mx = 0;
                for (int j = 0; j < n; ++j) {
                    if ((i >> j & 1) == 1) {
                        if (s.Contains(nums[j])) {
                            break;
                        }
                        s.Add(nums[j]);
                        mi = Math.Min(mi, nums[j]);
                        mx = Math.Max(mx, nums[j]);
                    }
                }
                if (s.Count == m) {
                    g[i] = mx - mi;
                }
            }
            int[] f = new int[1 << n];
            int inf = 1 << 30;
            Array.Fill(f, inf);
            f[0] = 0;
            for (int i = 0; i < 1 << n; ++i) {
                if (f[i] == inf) {
                    continue;
                }
                HashSet<int> s = new();
                int mask = 0;
                for (int j = 0; j < n; ++j) {
                    if ((i >> j & 1) == 0 && !s.Contains(nums[j])) {
                        s.Add(nums[j]);
                        mask |= 1 << j;
                    }
                }
                if (s.Count < m) {
                    continue;
                }
                for (int j = mask; j > 0; j = (j - 1) & mask) {
                    if (g[j] != -1) {
                        f[i | j] = Math.Min(f[i | j], f[i] + g[j]);
                    }
                }
            }
            return f[(1 << n) - 1] == inf ? -1 : f[(1 << n) - 1];
        }
    
        private int bitCount(int x) {
            int cnt = 0;
            while (x > 0) {
                x &= x - 1;
                ++cnt;
            }
            return cnt;
        }
    }
    
    

All Problems

All Solutions