Welcome to Subscribe On Youtube
1676. Lowest Common Ancestor of a Binary Tree IV
Description
Given the root
of a binary tree and an array of TreeNode
objects nodes
, return the lowest common ancestor (LCA) of all the nodes in nodes
. All the nodes will exist in the tree, and all values of the tree's nodes are unique.
Extending the definition of LCA on Wikipedia: "The lowest common ancestor of n
nodes p1
, p2
, ..., pn
in a binary tree T
is the lowest node that has every pi
as a descendant (where we allow a node to be a descendant of itself) for every valid i
". A descendant of a node x
is a node y
that is on the path from node x
to some leaf node.
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [4,7] Output: 2 Explanation: The lowest common ancestor of nodes 4 and 7 is node 2.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [1] Output: 1 Explanation: The lowest common ancestor of a single node is the node itself.
Example 3:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [7,6,2,4] Output: 5 Explanation: The lowest common ancestor of the nodes 7, 6, 2, and 4 is node 5.
Constraints:
- The number of nodes in the tree is in the range
[1, 104]
. -109 <= Node.val <= 109
- All
Node.val
are unique. - All
nodes[i]
will exist in the tree. - All
nodes[i]
are distinct.
Solutions
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { private Set<Integer> s = new HashSet<>(); public TreeNode lowestCommonAncestor(TreeNode root, TreeNode[] nodes) { for (TreeNode node : nodes) { s.add(node.val); } return dfs(root); } private TreeNode dfs(TreeNode root) { if (root == null || s.contains(root.val)) { return root; } TreeNode left = dfs(root.left); TreeNode right = dfs(root.right); if (left == null) { return right; } if (right == null) { return left; } return root; } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, vector<TreeNode*>& nodes) { unordered_set<int> s; for (auto node : nodes) s.insert(node->val); function<TreeNode*(TreeNode*)> dfs = [&](TreeNode* root) -> TreeNode* { if (!root || s.count(root->val)) return root; auto left = dfs(root->left); auto right = dfs(root->right); if (!left) return right; if (!right) return left; return root; }; return dfs(root); } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def lowestCommonAncestor( self, root: 'TreeNode', nodes: 'List[TreeNode]' ) -> 'TreeNode': def dfs(root): if root is None or root.val in s: return root left, right = dfs(root.left), dfs(root.right) if left and right: return root return left or right s = {node.val for node in nodes} return dfs(root)
-
/** * Definition for a binary tree node. * function TreeNode(val) { * this.val = val; * this.left = this.right = null; * } */ /** * @param {TreeNode} root * @param {TreeNode[]} nodes * @return {TreeNode} */ var lowestCommonAncestor = function (root, nodes) { const s = new Set(); for (const node of nodes) { s.add(node.val); } function dfs(root) { if (!root || s.has(root.val)) { return root; } const [left, right] = [dfs(root.left), dfs(root.right)]; if (left && right) { return root; } return left || right; } return dfs(root); };