Welcome to Subscribe On Youtube
1674. Minimum Moves to Make Array Complementary
Description
You are given an integer array nums
of even length n
and an integer limit
. In one move, you can replace any integer from nums
with another integer between 1
and limit
, inclusive.
The array nums
is complementary if for all indices i
(0-indexed), nums[i] + nums[n - 1 - i]
equals the same number. For example, the array [1,2,3,4]
is complementary because for all indices i
, nums[i] + nums[n - 1 - i] = 5
.
Return the minimum number of moves required to make nums
complementary.
Example 1:
Input: nums = [1,2,4,3], limit = 4 Output: 1 Explanation: In 1 move, you can change nums to [1,2,2,3] (underlined elements are changed). nums[0] + nums[3] = 1 + 3 = 4. nums[1] + nums[2] = 2 + 2 = 4. nums[2] + nums[1] = 2 + 2 = 4. nums[3] + nums[0] = 3 + 1 = 4. Therefore, nums[i] + nums[n-1-i] = 4 for every i, so nums is complementary.
Example 2:
Input: nums = [1,2,2,1], limit = 2 Output: 2 Explanation: In 2 moves, you can change nums to [2,2,2,2]. You cannot change any number to 3 since 3 > limit.
Example 3:
Input: nums = [1,2,1,2], limit = 2 Output: 0 Explanation: nums is already complementary.
Constraints:
n == nums.length
2 <= n <= 105
1 <= nums[i] <= limit <= 105
n
is even.
Solutions
Solution 1: Difference Array
Let’s denote $a$ as the smaller value between $nums[i]$ and $nums[n-i-1]$, and $b$ as the larger value between $nums[i]$ and $nums[n-i-1]$.
Suppose that after replacement, the sum of the two numbers is $x$. From the problem, we know that the minimum value of $x$ is $2$, which means both numbers are replaced by $1$; the maximum value is $2 \times limit$, which means both numbers are replaced by $limit$. Therefore, the range of $x$ is $[2,… 2 \times limit]$.
How to find the minimum number of replacements for different $x$?
We analyze and find:
- If $x = a + b$, then the number of replacements we need is $0$, which means the current pair of numbers already meets the complement requirement;
- Otherwise, if $1 + a \le x \le limit + b $, then the number of replacements we need is $1$, which means we can replace one of the numbers;
- Otherwise, if $2 \le x \le 2 \times limit$, then the number of replacements we need is $2$, which means we need to replace both numbers.
Therefore, we can iterate over each pair of numbers and perform the following operations:
- First, add $2$ to the number of operations required in the range $[2,… 2 \times limit]$.
- Then, subtract $1$ from the number of operations required in the range $[1 + a,… limit + b]$.
- Finally, subtract $1$ from the number of operations required in the range $[a + b,… a + b]$.
We can see that this is actually adding and subtracting elements in a continuous interval, so we can use a difference array to implement it.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.
-
class Solution { public int minMoves(int[] nums, int limit) { int n = nums.length; int[] d = new int[limit * 2 + 2]; for (int i = 0; i < n >> 1; ++i) { int a = Math.min(nums[i], nums[n - i - 1]); int b = Math.max(nums[i], nums[n - i - 1]); d[2] += 2; d[limit * 2 + 1] -= 2; d[a + 1] -= 1; d[b + limit + 1] += 1; d[a + b] -= 1; d[a + b + 1] += 1; } int ans = n, s = 0; for (int i = 2; i <= limit * 2; ++i) { s += d[i]; if (ans > s) { ans = s; } } return ans; } }
-
class Solution { public: int minMoves(vector<int>& nums, int limit) { int n = nums.size(); vector<int> d(limit * 2 + 2); for (int i = 0; i < n >> 1; ++i) { int a = min(nums[i], nums[n - i - 1]); int b = max(nums[i], nums[n - i - 1]); d[2] += 2; d[limit * 2 + 1] -= 2; d[a + 1] -= 1; d[b + limit + 1] += 1; d[a + b] -= 1; d[a + b + 1] += 1; } int ans = n, s = 0; for (int i = 2; i <= limit * 2; ++i) { s += d[i]; if (ans > s) { ans = s; } } return ans; } };
-
class Solution: def minMoves(self, nums: List[int], limit: int) -> int: d = [0] * (limit * 2 + 2) n = len(nums) for i in range(n >> 1): a, b = min(nums[i], nums[n - i - 1]), max(nums[i], nums[n - i - 1]) d[2] += 2 d[limit * 2 + 1] -= 2 d[a + 1] -= 1 d[b + limit + 1] += 1 d[a + b] -= 1 d[a + b + 1] += 1 ans, s = n, 0 for v in d[2 : limit * 2 + 1]: s += v if ans > s: ans = s return ans
-
func minMoves(nums []int, limit int) int { d := make([]int, limit*2+2) n := len(nums) for i := 0; i < n>>1; i++ { a, b := min(nums[i], nums[n-i-1]), max(nums[i], nums[n-i-1]) d[2] += 2 d[limit*2+1] -= 2 d[a+1] -= 1 d[b+limit+1] += 1 d[a+b] -= 1 d[a+b+1] += 1 } ans, s := n, 0 for _, v := range d[2 : limit*2+1] { s += v if ans > s { ans = s } } return ans }
-
function minMoves(nums: number[], limit: number): number { const n = nums.length; const d: number[] = Array(limit * 2 + 2).fill(0); for (let i = 0; i < n >> 1; ++i) { const a = Math.min(nums[i], nums[n - i - 1]); const b = Math.max(nums[i], nums[n - i - 1]); d[2] += 2; d[limit * 2 + 1] -= 2; d[a + 1] -= 1; d[b + limit + 1] += 1; d[a + b] -= 1; d[a + b + 1] += 1; } let ans = n; let s = 0; for (let i = 2; i <= limit * 2; ++i) { s += d[i]; if (ans > s) { ans = s; } } return ans; }