Welcome to Subscribe On Youtube

1627. Graph Connectivity With Threshold

Description

We have n cities labeled from 1 to n. Two different cities with labels x and y are directly connected by a bidirectional road if and only if x and y share a common divisor strictly greater than some threshold. More formally, cities with labels x and y have a road between them if there exists an integer z such that all of the following are true:

  • x % z == 0,
  • y % z == 0, and
  • z > threshold.

Given the two integers, n and threshold, and an array of queries, you must determine for each queries[i] = [ai, bi] if cities ai and bi are connected directly or indirectly. (i.e. there is some path between them).

Return an array answer, where answer.length == queries.length and answer[i] is true if for the ith query, there is a path between ai and bi, or answer[i] is false if there is no path.

 

Example 1:

Input: n = 6, threshold = 2, queries = [[1,4],[2,5],[3,6]]
Output: [false,false,true]
Explanation: The divisors for each number:
1:   1
2:   1, 2
3:   1, 3
4:   1, 2, 4
5:   1, 5
6:   1, 2, 3, 6
Using the underlined divisors above the threshold, only cities 3 and 6 share a common divisor, so they are the
only ones directly connected. The result of each query:
[1,4]   1 is not connected to 4
[2,5]   2 is not connected to 5
[3,6]   3 is connected to 6 through path 3--6

Example 2:

Input: n = 6, threshold = 0, queries = [[4,5],[3,4],[3,2],[2,6],[1,3]]
Output: [true,true,true,true,true]
Explanation: The divisors for each number are the same as the previous example. However, since the threshold is 0,
all divisors can be used. Since all numbers share 1 as a divisor, all cities are connected.

Example 3:

Input: n = 5, threshold = 1, queries = [[4,5],[4,5],[3,2],[2,3],[3,4]]
Output: [false,false,false,false,false]
Explanation: Only cities 2 and 4 share a common divisor 2 which is strictly greater than the threshold 1, so they are the only ones directly connected.
Please notice that there can be multiple queries for the same pair of nodes [x, y], and that the query [x, y] is equivalent to the query [y, x].

 

Constraints:

  • 2 <= n <= 104
  • 0 <= threshold <= n
  • 1 <= queries.length <= 105
  • queries[i].length == 2
  • 1 <= ai, bi <= cities
  • ai != bi

Solutions

Solution 1: Union-Find

We can enumerate $z$ and its multiples, and use union-find to connect them. In this way, for each query $[a, b]$, we only need to determine whether $a$ and $b$ are in the same connected component.

The time complexity is $O(n \times \log n \times (\alpha(n) + q))$, and the space complexity is $O(n)$. Here, $n$ and $q$ are the number of nodes and queries, respectively, and $\alpha$ is the inverse function of the Ackermann function.

  • class UnionFind {
        private int[] p;
        private int[] size;
    
        public UnionFind(int n) {
            p = new int[n];
            size = new int[n];
            for (int i = 0; i < n; ++i) {
                p[i] = i;
                size[i] = 1;
            }
        }
    
        public int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    
        public boolean union(int a, int b) {
            int pa = find(a), pb = find(b);
            if (pa == pb) {
                return false;
            }
            if (size[pa] > size[pb]) {
                p[pb] = pa;
                size[pa] += size[pb];
            } else {
                p[pa] = pb;
                size[pb] += size[pa];
            }
            return true;
        }
    }
    
    class Solution {
        public List<Boolean> areConnected(int n, int threshold, int[][] queries) {
            UnionFind uf = new UnionFind(n + 1);
            for (int a = threshold + 1; a <= n; ++a) {
                for (int b = a + a; b <= n; b += a) {
                    uf.union(a, b);
                }
            }
            List<Boolean> ans = new ArrayList<>();
            for (var q : queries) {
                ans.add(uf.find(q[0]) == uf.find(q[1]));
            }
            return ans;
        }
    }
    
  • class UnionFind {
    public:
        UnionFind(int n) {
            p = vector<int>(n);
            size = vector<int>(n, 1);
            iota(p.begin(), p.end(), 0);
        }
    
        bool unite(int a, int b) {
            int pa = find(a), pb = find(b);
            if (pa == pb) {
                return false;
            }
            if (size[pa] > size[pb]) {
                p[pb] = pa;
                size[pa] += size[pb];
            } else {
                p[pa] = pb;
                size[pb] += size[pa];
            }
            return true;
        }
    
        int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    
    private:
        vector<int> p, size;
    };
    
    class Solution {
    public:
        vector<bool> areConnected(int n, int threshold, vector<vector<int>>& queries) {
            UnionFind uf(n + 1);
            for (int a = threshold + 1; a <= n; ++a) {
                for (int b = a + a; b <= n; b += a) {
                    uf.unite(a, b);
                }
            }
            vector<bool> ans;
            for (auto& q : queries) {
                ans.push_back(uf.find(q[0]) == uf.find(q[1]));
            }
            return ans;
        }
    };
    
  • class UnionFind:
        def __init__(self, n):
            self.p = list(range(n))
            self.size = [1] * n
    
        def find(self, x):
            if self.p[x] != x:
                self.p[x] = self.find(self.p[x])
            return self.p[x]
    
        def union(self, a, b):
            pa, pb = self.find(a), self.find(b)
            if pa == pb:
                return False
            if self.size[pa] > self.size[pb]:
                self.p[pb] = pa
                self.size[pa] += self.size[pb]
            else:
                self.p[pa] = pb
                self.size[pb] += self.size[pa]
            return True
    
    
    class Solution:
        def areConnected(
            self, n: int, threshold: int, queries: List[List[int]]
        ) -> List[bool]:
            uf = UnionFind(n + 1)
            for a in range(threshold + 1, n + 1):
                for b in range(a + a, n + 1, a):
                    uf.union(a, b)
            return [uf.find(a) == uf.find(b) for a, b in queries]
    
    
  • type unionFind struct {
    	p, size []int
    }
    
    func newUnionFind(n int) *unionFind {
    	p := make([]int, n)
    	size := make([]int, n)
    	for i := range p {
    		p[i] = i
    		size[i] = 1
    	}
    	return &unionFind{p, size}
    }
    
    func (uf *unionFind) find(x int) int {
    	if uf.p[x] != x {
    		uf.p[x] = uf.find(uf.p[x])
    	}
    	return uf.p[x]
    }
    
    func (uf *unionFind) union(a, b int) bool {
    	pa, pb := uf.find(a), uf.find(b)
    	if pa == pb {
    		return false
    	}
    	if uf.size[pa] > uf.size[pb] {
    		uf.p[pb] = pa
    		uf.size[pa] += uf.size[pb]
    	} else {
    		uf.p[pa] = pb
    		uf.size[pb] += uf.size[pa]
    	}
    	return true
    }
    
    func areConnected(n int, threshold int, queries [][]int) []bool {
    	uf := newUnionFind(n + 1)
    	for a := threshold + 1; a <= n; a++ {
    		for b := a + a; b <= n; b += a {
    			uf.union(a, b)
    		}
    	}
    	ans := make([]bool, len(queries))
    	for i, q := range queries {
    		ans[i] = uf.find(q[0]) == uf.find(q[1])
    	}
    	return ans
    }
    
  • class UnionFind {
        p: number[];
        size: number[];
        constructor(n: number) {
            this.p = Array(n)
                .fill(0)
                .map((_, i) => i);
            this.size = Array(n).fill(1);
        }
    
        find(x: number): number {
            if (this.p[x] !== x) {
                this.p[x] = this.find(this.p[x]);
            }
            return this.p[x];
        }
    
        union(a: number, b: number): boolean {
            const [pa, pb] = [this.find(a), this.find(b)];
            if (pa === pb) {
                return false;
            }
            if (this.size[pa] > this.size[pb]) {
                this.p[pb] = pa;
                this.size[pa] += this.size[pb];
            } else {
                this.p[pa] = pb;
                this.size[pb] += this.size[pa];
            }
            return true;
        }
    }
    
    function areConnected(n: number, threshold: number, queries: number[][]): boolean[] {
        const uf = new UnionFind(n + 1);
        for (let a = threshold + 1; a <= n; ++a) {
            for (let b = a * 2; b <= n; b += a) {
                uf.union(a, b);
            }
        }
        return queries.map(([a, b]) => uf.find(a) === uf.find(b));
    }
    
    

All Problems

All Solutions