Welcome to Subscribe On Youtube
1545. Find Kth Bit in Nth Binary String
Description
Given two positive integers n
and k
, the binary string Sn
is formed as follows:
S1 = "0"
Si = Si - 1 + "1" + reverse(invert(Si - 1))
fori > 1
Where +
denotes the concatenation operation, reverse(x)
returns the reversed string x
, and invert(x)
inverts all the bits in x
(0
changes to 1
and 1
changes to 0
).
For example, the first four strings in the above sequence are:
S1 = "0"
S2 = "011"
S3 = "0111001"
S4 = "011100110110001"
Return the kth
bit in Sn
. It is guaranteed that k
is valid for the given n
.
Example 1:
Input: n = 3, k = 1 Output: "0" Explanation: S3 is "0111001". The 1st bit is "0".
Example 2:
Input: n = 4, k = 11 Output: "1" Explanation: S4 is "011100110110001". The 11th bit is "1".
Constraints:
1 <= n <= 20
1 <= k <= 2n - 1
Solutions
Solution 1: Case Analysis + Recursion
We can observe that for $S_n$, the first half is the same as $S_{n-1}$, and the second half is the reverse and negation of $S_{n-1}$. Therefore, we can design a function $dfs(n, k)$, which represents the $k$-th character of the $n$-th string. The answer is $dfs(n, k)$.
The calculation process of the function $dfs(n, k)$ is as follows:
- If $k = 1$, then the answer is $0$;
- If $k$ is a power of $2$, then the answer is $1$;
- If $k \times 2 < 2^n - 1$, it means that $k$ is in the first half, and the answer is $dfs(n - 1, k)$;
- Otherwise, the answer is $dfs(n - 1, 2^n - k) \oplus 1$, where $\oplus$ represents the XOR operation.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the given $n$ in the problem.
-
class Solution { public char findKthBit(int n, int k) { return (char) ('0' + dfs(n, k)); } private int dfs(int n, int k) { if (k == 1) { return 0; } if ((k & (k - 1)) == 0) { return 1; } int m = 1 << n; if (k * 2 < m - 1) { return dfs(n - 1, k); } return dfs(n - 1, m - k) ^ 1; } }
-
class Solution { public: char findKthBit(int n, int k) { function<int(int, int)> dfs = [&](int n, int k) { if (k == 1) { return 0; } if ((k & (k - 1)) == 0) { return 1; } int m = 1 << n; if (k * 2 < m - 1) { return dfs(n - 1, k); } return dfs(n - 1, m - k) ^ 1; }; return '0' + dfs(n, k); } };
-
class Solution: def findKthBit(self, n: int, k: int) -> str: def dfs(n: int, k: int) -> int: if k == 1: return 0 if (k & (k - 1)) == 0: return 1 m = 1 << n if k * 2 < m - 1: return dfs(n - 1, k) return dfs(n - 1, m - k) ^ 1 return str(dfs(n, k))
-
func findKthBit(n int, k int) byte { var dfs func(n, k int) int dfs = func(n, k int) int { if k == 1 { return 0 } if k&(k-1) == 0 { return 1 } m := 1 << n if k*2 < m-1 { return dfs(n-1, k) } return dfs(n-1, m-k) ^ 1 } return byte('0' + dfs(n, k)) }
-
function findKthBit(n: number, k: number): string { const dfs = (n: number, k: number): number => { if (k === 1) { return 0; } if ((k & (k - 1)) === 0) { return 1; } const m = 1 << n; if (k * 2 < m - 1) { return dfs(n - 1, k); } return dfs(n - 1, m - k) ^ 1; }; return dfs(n, k).toString(); }