Welcome to Subscribe On Youtube

1515. Best Position for a Service Centre

Description

A delivery company wants to build a new service center in a new city. The company knows the positions of all the customers in this city on a 2D-Map and wants to build the new center in a position such that the sum of the euclidean distances to all customers is minimum.

Given an array positions where positions[i] = [xi, yi] is the position of the ith customer on the map, return the minimum sum of the euclidean distances to all customers.

In other words, you need to choose the position of the service center [xcentre, ycentre] such that the following formula is minimized:

Answers within 10-5 of the actual value will be accepted.

 

Example 1:

Input: positions = [[0,1],[1,0],[1,2],[2,1]]
Output: 4.00000
Explanation: As shown, you can see that choosing [xcentre, ycentre] = [1, 1] will make the distance to each customer = 1, the sum of all distances is 4 which is the minimum possible we can achieve.

Example 2:

Input: positions = [[1,1],[3,3]]
Output: 2.82843
Explanation: The minimum possible sum of distances = sqrt(2) + sqrt(2) = 2.82843

 

Constraints:

  • 1 <= positions.length <= 50
  • positions[i].length == 2
  • 0 <= xi, yi <= 100

Solutions

  • class Solution {
        public double getMinDistSum(int[][] positions) {
            int n = positions.length;
            double x = 0, y = 0;
            for (int[] p : positions) {
                x += p[0];
                y += p[1];
            }
            x /= n;
            y /= n;
            double decay = 0.999;
            double eps = 1e-6;
            double alpha = 0.5;
            while (true) {
                double gradX = 0, gradY = 0;
                double dist = 0;
                for (int[] p : positions) {
                    double a = x - p[0], b = y - p[1];
                    double c = Math.sqrt(a * a + b * b);
                    gradX += a / (c + 1e-8);
                    gradY += b / (c + 1e-8);
                    dist += c;
                }
                double dx = gradX * alpha, dy = gradY * alpha;
                if (Math.abs(dx) <= eps && Math.abs(dy) <= eps) {
                    return dist;
                }
                x -= dx;
                y -= dy;
                alpha *= decay;
            }
        }
    }
    
  • class Solution {
    public:
        double getMinDistSum(vector<vector<int>>& positions) {
            int n = positions.size();
            double x = 0, y = 0;
            for (auto& p : positions) {
                x += p[0];
                y += p[1];
            }
            x /= n;
            y /= n;
            double decay = 0.999;
            double eps = 1e-6;
            double alpha = 0.5;
            while (true) {
                double gradX = 0, gradY = 0;
                double dist = 0;
                for (auto& p : positions) {
                    double a = x - p[0], b = y - p[1];
                    double c = sqrt(a * a + b * b);
                    gradX += a / (c + 1e-8);
                    gradY += b / (c + 1e-8);
                    dist += c;
                }
                double dx = gradX * alpha, dy = gradY * alpha;
                if (abs(dx) <= eps && abs(dy) <= eps) {
                    return dist;
                }
                x -= dx;
                y -= dy;
                alpha *= decay;
            }
        }
    };
    
  • class Solution:
        def getMinDistSum(self, positions: List[List[int]]) -> float:
            n = len(positions)
            x = y = 0
            for x1, y1 in positions:
                x += x1
                y += y1
            x, y = x / n, y / n
            decay = 0.999
            eps = 1e-6
            alpha = 0.5
            while 1:
                grad_x = grad_y = 0
                dist = 0
                for x1, y1 in positions:
                    a = x - x1
                    b = y - y1
                    c = sqrt(a * a + b * b)
                    grad_x += a / (c + 1e-8)
                    grad_y += b / (c + 1e-8)
                    dist += c
                dx = grad_x * alpha
                dy = grad_y * alpha
                x -= dx
                y -= dy
                alpha *= decay
                if abs(dx) <= eps and abs(dy) <= eps:
                    return dist
    
    
  • func getMinDistSum(positions [][]int) float64 {
    	n := len(positions)
    	var x, y float64
    	for _, p := range positions {
    		x += float64(p[0])
    		y += float64(p[1])
    	}
    	x /= float64(n)
    	y /= float64(n)
    	const decay float64 = 0.999
    	const eps float64 = 1e-6
    	var alpha float64 = 0.5
    	for {
    		var gradX, gradY float64
    		var dist float64
    		for _, p := range positions {
    			a := x - float64(p[0])
    			b := y - float64(p[1])
    			c := math.Sqrt(a*a + b*b)
    			gradX += a / (c + 1e-8)
    			gradY += b / (c + 1e-8)
    			dist += c
    		}
    		dx := gradX * alpha
    		dy := gradY * alpha
    		if math.Abs(dx) <= eps && math.Abs(dy) <= eps {
    			return dist
    		}
    		x -= dx
    		y -= dy
    		alpha *= decay
    	}
    }
    
  • function getMinDistSum(positions: number[][]): number {
        const n = positions.length;
        let [x, y] = [0, 0];
        for (const [px, py] of positions) {
            x += px;
            y += py;
        }
        x /= n;
        y /= n;
        const decay = 0.999;
        const eps = 1e-6;
        let alpha = 0.5;
        while (true) {
            let [gradX, gradY] = [0, 0];
            let dist = 0;
            for (const [px, py] of positions) {
                const a = x - px;
                const b = y - py;
                const c = Math.sqrt(a * a + b * b);
                gradX += a / (c + 1e-8);
                gradY += b / (c + 1e-8);
                dist += c;
            }
            const dx = gradX * alpha;
            const dy = gradY * alpha;
            if (Math.abs(dx) <= eps && Math.abs(dy) <= eps) {
                return dist;
            }
            x -= dx;
            y -= dy;
            alpha *= decay;
        }
    }
    
    

All Problems

All Solutions