Welcome to Subscribe On Youtube
1514. Path with Maximum Probability
Description
You are given an undirected weighted graph of n
nodes (0-indexed), represented by an edge list where edges[i] = [a, b]
is an undirected edge connecting the nodes a
and b
with a probability of success of traversing that edge succProb[i]
.
Given two nodes start
and end
, find the path with the maximum probability of success to go from start
to end
and return its success probability.
If there is no path from start
to end
, return 0. Your answer will be accepted if it differs from the correct answer by at most 1e-5.
Example 1:
Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2 Output: 0.25000 Explanation: There are two paths from start to end, one having a probability of success = 0.2 and the other has 0.5 * 0.5 = 0.25.
Example 2:
Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2 Output: 0.30000
Example 3:
Input: n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2 Output: 0.00000 Explanation: There is no path between 0 and 2.
Constraints:
2 <= n <= 10^4
0 <= start, end < n
start != end
0 <= a, b < n
a != b
0 <= succProb.length == edges.length <= 2*10^4
0 <= succProb[i] <= 1
- There is at most one edge between every two nodes.
Solutions
-
class Solution { public double maxProbability(int n, int[][] edges, double[] succProb, int start, int end) { List<Pair<Integer, Double>>[] g = new List[n]; Arrays.setAll(g, k -> new ArrayList<>()); for (int i = 0; i < edges.length; ++i) { int a = edges[i][0], b = edges[i][1]; double s = succProb[i]; g[a].add(new Pair<>(b, s)); g[b].add(new Pair<>(a, s)); } PriorityQueue<Pair<Double, Integer>> q = new PriorityQueue<>(Comparator.comparingDouble(Pair::getKey)); double[] d = new double[n]; d[start] = 1.0; q.offer(new Pair<>(-1.0, start)); while (!q.isEmpty()) { Pair<Double, Integer> p = q.poll(); double w = p.getKey(); w *= -1; int u = p.getValue(); for (Pair<Integer, Double> ne : g[u]) { int v = ne.getKey(); double t = ne.getValue(); if (d[v] < d[u] * t) { d[v] = d[u] * t; q.offer(new Pair<>(-d[v], v)); } } } return d[end]; } }
-
class Solution { public: double maxProbability(int n, vector<vector<int>>& edges, vector<double>& succProb, int start, int end) { vector<vector<pair<int, double>>> g(n); for (int i = 0; i < edges.size(); ++i) { int a = edges[i][0], b = edges[i][1]; double s = succProb[i]; g[a].push_back({b, s}); g[b].push_back({a, s}); } vector<double> d(n); d[start] = 1.0; queue<pair<double, int>> q; q.push({1.0, start}); while (!q.empty()) { auto p = q.front(); q.pop(); double w = p.first; int u = p.second; if (d[u] > w) continue; for (auto& e : g[u]) { int v = e.first; double t = e.second; if (d[v] < d[u] * t) { d[v] = d[u] * t; q.push({d[v], v}); } } } return d[end]; } };
-
class Solution: def maxProbability( self, n: int, edges: List[List[int]], succProb: List[float], start: int, end: int, ) -> float: g = defaultdict(list) for (a, b), s in zip(edges, succProb): g[a].append((b, s)) g[b].append((a, s)) q = [(-1, start)] d = [0] * n d[start] = 1 while q: w, u = heappop(q) w = -w if d[u] > w: continue for v, t in g[u]: if d[v] < d[u] * t: d[v] = d[u] * t heappush(q, (-d[v], v)) return d[end]
-
func maxProbability(n int, edges [][]int, succProb []float64, start int, end int) float64 { g := make([][]pair, n) for i, e := range edges { a, b, s := e[0], e[1], succProb[i] g[a] = append(g[a], pair{b, s}) g[b] = append(g[b], pair{a, s}) } d := make([]float64, n) d[start] = 1 vis := make([]bool, n) q := []int{start} vis[start] = true for len(q) > 0 { i := q[0] q = q[1:] vis[i] = false for _, ne := range g[i] { j, s := ne.idx, ne.s if d[j] < d[i]*s { d[j] = d[i] * s if !vis[j] { q = append(q, j) vis[j] = true } } } } return d[end] } type pair struct { idx int s float64 }