Welcome to Subscribe On Youtube

1504. Count Submatrices With All Ones

Description

Given an m x n binary matrix mat, return the number of submatrices that have all ones.

 

Example 1:

Input: mat = [[1,0,1],[1,1,0],[1,1,0]]
Output: 13
Explanation: 
There are 6 rectangles of side 1x1.
There are 2 rectangles of side 1x2.
There are 3 rectangles of side 2x1.
There is 1 rectangle of side 2x2. 
There is 1 rectangle of side 3x1.
Total number of rectangles = 6 + 2 + 3 + 1 + 1 = 13.

Example 2:

Input: mat = [[0,1,1,0],[0,1,1,1],[1,1,1,0]]
Output: 24
Explanation: 
There are 8 rectangles of side 1x1.
There are 5 rectangles of side 1x2.
There are 2 rectangles of side 1x3. 
There are 4 rectangles of side 2x1.
There are 2 rectangles of side 2x2. 
There are 2 rectangles of side 3x1. 
There is 1 rectangle of side 3x2. 
Total number of rectangles = 8 + 5 + 2 + 4 + 2 + 2 + 1 = 24.

 

Constraints:

  • 1 <= m, n <= 150
  • mat[i][j] is either 0 or 1.

Solutions

  • class Solution {
        public int numSubmat(int[][] mat) {
            int m = mat.length, n = mat[0].length;
            int[][] g = new int[m][n];
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (mat[i][j] == 1) {
                        g[i][j] = j == 0 ? 1 : 1 + g[i][j - 1];
                    }
                }
            }
            int ans = 0;
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    int col = 1 << 30;
                    for (int k = i; k >= 0 && col > 0; --k) {
                        col = Math.min(col, g[k][j]);
                        ans += col;
                    }
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int numSubmat(vector<vector<int>>& mat) {
            int m = mat.size(), n = mat[0].size();
            vector<vector<int>> g(m, vector<int>(n));
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (mat[i][j] == 1) {
                        g[i][j] = j == 0 ? 1 : 1 + g[i][j - 1];
                    }
                }
            }
            int ans = 0;
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    int col = 1 << 30;
                    for (int k = i; k >= 0 && col > 0; --k) {
                        col = min(col, g[k][j]);
                        ans += col;
                    }
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def numSubmat(self, mat: List[List[int]]) -> int:
            m, n = len(mat), len(mat[0])
            g = [[0] * n for _ in range(m)]
            for i in range(m):
                for j in range(n):
                    if mat[i][j]:
                        g[i][j] = 1 if j == 0 else 1 + g[i][j - 1]
            ans = 0
            for i in range(m):
                for j in range(n):
                    col = inf
                    for k in range(i, -1, -1):
                        col = min(col, g[k][j])
                        ans += col
            return ans
    
    
  • func numSubmat(mat [][]int) (ans int) {
    	m, n := len(mat), len(mat[0])
    	g := make([][]int, m)
    	for i := range g {
    		g[i] = make([]int, n)
    		for j := range g[i] {
    			if mat[i][j] == 1 {
    				if j == 0 {
    					g[i][j] = 1
    				} else {
    					g[i][j] = 1 + g[i][j-1]
    				}
    			}
    		}
    	}
    	for i := range g {
    		for j := range g[i] {
    			col := 1 << 30
    			for k := i; k >= 0 && col > 0; k-- {
    				col = min(col, g[k][j])
    				ans += col
    			}
    		}
    	}
    	return
    }
    

All Problems

All Solutions