Welcome to Subscribe On Youtube
1499. Max Value of Equation
Description
You are given an array points
containing the coordinates of points on a 2D plane, sorted by the x-values, where points[i] = [xi, yi]
such that xi < xj
for all 1 <= i < j <= points.length
. You are also given an integer k
.
Return the maximum value of the equation yi + yj + |xi - xj|
where |xi - xj| <= k
and 1 <= i < j <= points.length
.
It is guaranteed that there exists at least one pair of points that satisfy the constraint |xi - xj| <= k
.
Example 1:
Input: points = [[1,3],[2,0],[5,10],[6,-10]], k = 1 Output: 4 Explanation: The first two points satisfy the condition |xi - xj| <= 1 and if we calculate the equation we get 3 + 0 + |1 - 2| = 4. Third and fourth points also satisfy the condition and give a value of 10 + -10 + |5 - 6| = 1. No other pairs satisfy the condition, so we return the max of 4 and 1.
Example 2:
Input: points = [[0,0],[3,0],[9,2]], k = 3 Output: 3 Explanation: Only the first two points have an absolute difference of 3 or less in the x-values, and give the value of 0 + 0 + |0 - 3| = 3.
Constraints:
2 <= points.length <= 105
points[i].length == 2
-108 <= xi, yi <= 108
0 <= k <= 2 * 108
xi < xj
for all1 <= i < j <= points.length
xi
form a strictly increasing sequence.
Solutions
-
class Solution { public int findMaxValueOfEquation(int[][] points, int k) { int ans = -(1 << 30); PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> b[0] - a[0]); for (var p : points) { int x = p[0], y = p[1]; while (!pq.isEmpty() && x - pq.peek()[1] > k) { pq.poll(); } if (!pq.isEmpty()) { ans = Math.max(ans, x + y + pq.peek()[0]); } pq.offer(new int[] {y - x, x}); } return ans; } }
-
class Solution { public: int findMaxValueOfEquation(vector<vector<int>>& points, int k) { int ans = -(1 << 30); priority_queue<pair<int, int>> pq; for (auto& p : points) { int x = p[0], y = p[1]; while (pq.size() && x - pq.top().second > k) { pq.pop(); } if (pq.size()) { ans = max(ans, x + y + pq.top().first); } pq.emplace(y - x, x); } return ans; } };
-
class Solution: def findMaxValueOfEquation(self, points: List[List[int]], k: int) -> int: ans = -inf pq = [] for x, y in points: while pq and x - pq[0][1] > k: heappop(pq) if pq: ans = max(ans, x + y - pq[0][0]) heappush(pq, (x - y, x)) return ans
-
func findMaxValueOfEquation(points [][]int, k int) int { ans := -(1 << 30) hp := hp{} for _, p := range points { x, y := p[0], p[1] for hp.Len() > 0 && x-hp[0].x > k { heap.Pop(&hp) } if hp.Len() > 0 { ans = max(ans, x+y+hp[0].v) } heap.Push(&hp, pair{y - x, x}) } return ans } type pair struct{ v, x int } type hp []pair func (h hp) Len() int { return len(h) } func (h hp) Less(i, j int) bool { a, b := h[i], h[j] return a.v > b.v } func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *hp) Push(v any) { *h = append(*h, v.(pair)) } func (h *hp) Pop() any { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
-
function findMaxValueOfEquation(points: number[][], k: number): number { let ans = -(1 << 30); const pq = new Heap<[number, number]>((a, b) => b[0] - a[0]); for (const [x, y] of points) { while (pq.size() && x - pq.top()[1] > k) { pq.pop(); } if (pq.size()) { ans = Math.max(ans, x + y + pq.top()[0]); } pq.push([y - x, x]); } return ans; } type Compare<T> = (lhs: T, rhs: T) => number; class Heap<T = number> { data: Array<T | null>; lt: (i: number, j: number) => boolean; constructor(); constructor(data: T[]); constructor(compare: Compare<T>); constructor(data: T[], compare: Compare<T>); constructor(data: T[] | Compare<T>, compare?: (lhs: T, rhs: T) => number); constructor( data: T[] | Compare<T> = [], compare: Compare<T> = (lhs: T, rhs: T) => (lhs < rhs ? -1 : lhs > rhs ? 1 : 0), ) { if (typeof data === 'function') { compare = data; data = []; } this.data = [null, ...data]; this.lt = (i, j) => compare(this.data[i]!, this.data[j]!) < 0; for (let i = this.size(); i > 0; i--) this.heapify(i); } size(): number { return this.data.length - 1; } push(v: T): void { this.data.push(v); let i = this.size(); while (i >> 1 !== 0 && this.lt(i, i >> 1)) this.swap(i, (i >>= 1)); } pop(): T { this.swap(1, this.size()); const top = this.data.pop(); this.heapify(1); return top!; } top(): T { return this.data[1]!; } heapify(i: number): void { while (true) { let min = i; const [l, r, n] = [i * 2, i * 2 + 1, this.data.length]; if (l < n && this.lt(l, min)) min = l; if (r < n && this.lt(r, min)) min = r; if (min !== i) { this.swap(i, min); i = min; } else break; } } clear(): void { this.data = [null]; } private swap(i: number, j: number): void { const d = this.data; [d[i], d[j]] = [d[j], d[i]]; } }