Welcome to Subscribe On Youtube

1499. Max Value of Equation

Description

You are given an array points containing the coordinates of points on a 2D plane, sorted by the x-values, where points[i] = [xi, yi] such that xi < xj for all 1 <= i < j <= points.length. You are also given an integer k.

Return the maximum value of the equation yi + yj + |xi - xj| where |xi - xj| <= k and 1 <= i < j <= points.length.

It is guaranteed that there exists at least one pair of points that satisfy the constraint |xi - xj| <= k.

 

Example 1:

Input: points = [[1,3],[2,0],[5,10],[6,-10]], k = 1
Output: 4
Explanation: The first two points satisfy the condition |xi - xj| <= 1 and if we calculate the equation we get 3 + 0 + |1 - 2| = 4. Third and fourth points also satisfy the condition and give a value of 10 + -10 + |5 - 6| = 1.
No other pairs satisfy the condition, so we return the max of 4 and 1.

Example 2:

Input: points = [[0,0],[3,0],[9,2]], k = 3
Output: 3
Explanation: Only the first two points have an absolute difference of 3 or less in the x-values, and give the value of 0 + 0 + |0 - 3| = 3.

 

Constraints:

  • 2 <= points.length <= 105
  • points[i].length == 2
  • -108 <= xi, yi <= 108
  • 0 <= k <= 2 * 108
  • xi < xj for all 1 <= i < j <= points.length
  • xi form a strictly increasing sequence.

Solutions

  • class Solution {
        public int findMaxValueOfEquation(int[][] points, int k) {
            int ans = -(1 << 30);
            PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> b[0] - a[0]);
            for (var p : points) {
                int x = p[0], y = p[1];
                while (!pq.isEmpty() && x - pq.peek()[1] > k) {
                    pq.poll();
                }
                if (!pq.isEmpty()) {
                    ans = Math.max(ans, x + y + pq.peek()[0]);
                }
                pq.offer(new int[] {y - x, x});
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int findMaxValueOfEquation(vector<vector<int>>& points, int k) {
            int ans = -(1 << 30);
            priority_queue<pair<int, int>> pq;
            for (auto& p : points) {
                int x = p[0], y = p[1];
                while (pq.size() && x - pq.top().second > k) {
                    pq.pop();
                }
                if (pq.size()) {
                    ans = max(ans, x + y + pq.top().first);
                }
                pq.emplace(y - x, x);
            }
            return ans;
        }
    };
    
  • class Solution:
        def findMaxValueOfEquation(self, points: List[List[int]], k: int) -> int:
            ans = -inf
            pq = []
            for x, y in points:
                while pq and x - pq[0][1] > k:
                    heappop(pq)
                if pq:
                    ans = max(ans, x + y - pq[0][0])
                heappush(pq, (x - y, x))
            return ans
    
    
  • func findMaxValueOfEquation(points [][]int, k int) int {
    	ans := -(1 << 30)
    	hp := hp{}
    	for _, p := range points {
    		x, y := p[0], p[1]
    		for hp.Len() > 0 && x-hp[0].x > k {
    			heap.Pop(&hp)
    		}
    		if hp.Len() > 0 {
    			ans = max(ans, x+y+hp[0].v)
    		}
    		heap.Push(&hp, pair{y - x, x})
    	}
    	return ans
    }
    
    type pair struct{ v, x int }
    
    type hp []pair
    
    func (h hp) Len() int { return len(h) }
    func (h hp) Less(i, j int) bool {
    	a, b := h[i], h[j]
    	return a.v > b.v
    }
    func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
    func (h *hp) Push(v any)   { *h = append(*h, v.(pair)) }
    func (h *hp) Pop() any     { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
    
  • function findMaxValueOfEquation(points: number[][], k: number): number {
        let ans = -(1 << 30);
        const pq = new Heap<[number, number]>((a, b) => b[0] - a[0]);
        for (const [x, y] of points) {
            while (pq.size() && x - pq.top()[1] > k) {
                pq.pop();
            }
            if (pq.size()) {
                ans = Math.max(ans, x + y + pq.top()[0]);
            }
            pq.push([y - x, x]);
        }
        return ans;
    }
    
    type Compare<T> = (lhs: T, rhs: T) => number;
    
    class Heap<T = number> {
        data: Array<T | null>;
        lt: (i: number, j: number) => boolean;
        constructor();
        constructor(data: T[]);
        constructor(compare: Compare<T>);
        constructor(data: T[], compare: Compare<T>);
        constructor(data: T[] | Compare<T>, compare?: (lhs: T, rhs: T) => number);
        constructor(
            data: T[] | Compare<T> = [],
            compare: Compare<T> = (lhs: T, rhs: T) => (lhs < rhs ? -1 : lhs > rhs ? 1 : 0),
        ) {
            if (typeof data === 'function') {
                compare = data;
                data = [];
            }
            this.data = [null, ...data];
            this.lt = (i, j) => compare(this.data[i]!, this.data[j]!) < 0;
            for (let i = this.size(); i > 0; i--) this.heapify(i);
        }
    
        size(): number {
            return this.data.length - 1;
        }
    
        push(v: T): void {
            this.data.push(v);
            let i = this.size();
            while (i >> 1 !== 0 && this.lt(i, i >> 1)) this.swap(i, (i >>= 1));
        }
    
        pop(): T {
            this.swap(1, this.size());
            const top = this.data.pop();
            this.heapify(1);
            return top!;
        }
    
        top(): T {
            return this.data[1]!;
        }
        heapify(i: number): void {
            while (true) {
                let min = i;
                const [l, r, n] = [i * 2, i * 2 + 1, this.data.length];
                if (l < n && this.lt(l, min)) min = l;
                if (r < n && this.lt(r, min)) min = r;
                if (min !== i) {
                    this.swap(i, min);
                    i = min;
                } else break;
            }
        }
    
        clear(): void {
            this.data = [null];
        }
    
        private swap(i: number, j: number): void {
            const d = this.data;
            [d[i], d[j]] = [d[j], d[i]];
        }
    }
    
    

All Problems

All Solutions