Welcome to Subscribe On Youtube
1469. Find All The Lonely Nodes
Description
In a binary tree, a lonely node is a node that is the only child of its parent node. The root of the tree is not lonely because it does not have a parent node.
Given the root
of a binary tree, return an array containing the values of all lonely nodes in the tree. Return the list in any order.
Example 1:
Input: root = [1,2,3,null,4] Output: [4] Explanation: Light blue node is the only lonely node. Node 1 is the root and is not lonely. Nodes 2 and 3 have the same parent and are not lonely.
Example 2:
Input: root = [7,1,4,6,null,5,3,null,null,null,null,null,2] Output: [6,2] Explanation: Light blue nodes are lonely nodes. Please remember that order doesn't matter, [2,6] is also an acceptable answer.
Example 3:
Input: root = [11,99,88,77,null,null,66,55,null,null,44,33,null,null,22] Output: [77,55,33,66,44,22] Explanation: Nodes 99 and 88 share the same parent. Node 11 is the root. All other nodes are lonely.
Constraints:
- The number of nodes in the
tree
is in the range[1, 1000].
1 <= Node.val <= 106
Solutions
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { private List<Integer> ans = new ArrayList<>(); public List<Integer> getLonelyNodes(TreeNode root) { dfs(root); return ans; } private void dfs(TreeNode root) { if (root == null || (root.left == null && root.right == null)) { return; } if (root.left == null) { ans.add(root.right.val); } if (root.right == null) { ans.add(root.left.val); } dfs(root.left); dfs(root.right); } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: vector<int> getLonelyNodes(TreeNode* root) { vector<int> ans; function<void(TreeNode * root)> dfs; dfs = [&](TreeNode* root) { if (!root || (!root->left && !root->right)) return; if (!root->left) ans.push_back(root->right->val); if (!root->right) ans.push_back(root->left->val); dfs(root->left); dfs(root->right); }; dfs(root); return ans; } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def getLonelyNodes(self, root: Optional[TreeNode]) -> List[int]: def dfs(root): if root is None or (root.left is None and root.right is None): return if root.left is None: ans.append(root.right.val) if root.right is None: ans.append(root.left.val) dfs(root.left) dfs(root.right) ans = [] dfs(root) return ans
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func getLonelyNodes(root *TreeNode) []int { ans := []int{} var dfs func(*TreeNode) dfs = func(root *TreeNode) { if root == nil || (root.Left == nil && root.Right == nil) { return } if root.Left == nil { ans = append(ans, root.Right.Val) } if root.Right == nil { ans = append(ans, root.Left.Val) } dfs(root.Left) dfs(root.Right) } dfs(root) return ans }