Welcome to Subscribe On Youtube
1464. Maximum Product of Two Elements in an Array
Description
Given the array of integers nums
, you will choose two different indices i
and j
of that array. Return the maximum value of (nums[i]-1)\*(nums[j]-1)
.
Example 1:
Input: nums = [3,4,5,2] Output: 12 Explanation: If you choose the indices i=1 and j=2 (indexed from 0), you will get the maximum value, that is, (nums[1]-1)*(nums[2]-1) = (4-1)*(5-1) = 3*4 = 12.
Example 2:
Input: nums = [1,5,4,5] Output: 16 Explanation: Choosing the indices i=1 and j=3 (indexed from 0), you will get the maximum value of (5-1)*(5-1) = 16.
Example 3:
Input: nums = [3,7] Output: 12
Constraints:
2 <= nums.length <= 500
1 <= nums[i] <= 10^3
Solutions
-
class Solution { public int maxProduct(int[] nums) { int ans = 0; int n = nums.length; for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { ans = Math.max(ans, (nums[i] - 1) * (nums[j] - 1)); } } return ans; } }
-
class Solution { public: int maxProduct(vector<int>& nums) { int ans = 0; int n = nums.size(); for (int i = 0; i < n; ++i) { for (int j = i + 1; j < n; ++j) { ans = max(ans, (nums[i] - 1) * (nums[j] - 1)); } } return ans; } };
-
class Solution: def maxProduct(self, nums: List[int]) -> int: ans = 0 for i, a in enumerate(nums): for b in nums[i + 1 :]: ans = max(ans, (a - 1) * (b - 1)) return ans
-
func maxProduct(nums []int) int { ans := 0 for i, a := range nums { for _, b := range nums[i+1:] { t := (a - 1) * (b - 1) if ans < t { ans = t } } } return ans }
-
function maxProduct(nums: number[]): number { const n = nums.length; for (let i = 0; i < 2; i++) { let maxIdx = i; for (let j = i + 1; j < n; j++) { if (nums[j] > nums[maxIdx]) { maxIdx = j; } } [nums[i], nums[maxIdx]] = [nums[maxIdx], nums[i]]; } return (nums[0] - 1) * (nums[1] - 1); }
-
class Solution { /** * @param Integer[] $nums * @return Integer */ function maxProduct($nums) { $max = 0; $submax = 0; for ($i = 0; $i < count($nums); $i++) { if ($nums[$i] > $max) { $submax = $max; $max = $nums[$i]; } elseif ($nums[$i] > $submax) { $submax = $nums[$i]; } } return ($max - 1) * ($submax - 1); } }
-
impl Solution { pub fn max_product(nums: Vec<i32>) -> i32 { let mut max = 0; let mut submax = 0; for &num in nums.iter() { if num > max { submax = max; max = num; } else if num > submax { submax = num; } } (max - 1) * (submax - 1) } }