Welcome to Subscribe On Youtube

1458. Max Dot Product of Two Subsequences

Description

Given two arrays nums1 and nums2.

Return the maximum dot product between non-empty subsequences of nums1 and nums2 with the same length.

A subsequence of a array is a new array which is formed from the original array by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, [2,3,5] is a subsequence of [1,2,3,4,5] while [1,5,3] is not).

 

Example 1:

Input: nums1 = [2,1,-2,5], nums2 = [3,0,-6]
Output: 18
Explanation: Take subsequence [2,-2] from nums1 and subsequence [3,-6] from nums2.
Their dot product is (2*3 + (-2)*(-6)) = 18.

Example 2:

Input: nums1 = [3,-2], nums2 = [2,-6,7]
Output: 21
Explanation: Take subsequence [3] from nums1 and subsequence [7] from nums2.
Their dot product is (3*7) = 21.

Example 3:

Input: nums1 = [-1,-1], nums2 = [1,1]
Output: -1
Explanation: Take subsequence [-1] from nums1 and subsequence [1] from nums2.
Their dot product is -1.

 

Constraints:

  • 1 <= nums1.length, nums2.length <= 500
  • -1000 <= nums1[i], nums2[i] <= 1000

Solutions

Dynamic Programming.

  • class Solution {
        public int maxDotProduct(int[] nums1, int[] nums2) {
            int m = nums1.length, n = nums2.length;
            int[][] dp = new int[m + 1][n + 1];
            for (int[] e : dp) {
                Arrays.fill(e, Integer.MIN_VALUE);
            }
            for (int i = 1; i <= m; ++i) {
                for (int j = 1; j <= n; ++j) {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                    dp[i][j] = Math.max(
                        dp[i][j], Math.max(0, dp[i - 1][j - 1]) + nums1[i - 1] * nums2[j - 1]);
                }
            }
            return dp[m][n];
        }
    }
    
  • class Solution {
    public:
        int maxDotProduct(vector<int>& nums1, vector<int>& nums2) {
            int m = nums1.size(), n = nums2.size();
            vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MIN));
            for (int i = 1; i <= m; ++i) {
                for (int j = 1; j <= n; ++j) {
                    int v = nums1[i - 1] * nums2[j - 1];
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                    dp[i][j] = max(dp[i][j], max(0, dp[i - 1][j - 1]) + v);
                }
            }
            return dp[m][n];
        }
    };
    
  • class Solution:
        def maxDotProduct(self, nums1: List[int], nums2: List[int]) -> int:
            m, n = len(nums1), len(nums2)
            dp = [[-inf] * (n + 1) for _ in range(m + 1)]
            for i in range(1, m + 1):
                for j in range(1, n + 1):
                    v = nums1[i - 1] * nums2[j - 1]
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1], max(dp[i - 1][j - 1], 0) + v)
            return dp[-1][-1]
    
    
  • func maxDotProduct(nums1 []int, nums2 []int) int {
    	m, n := len(nums1), len(nums2)
    	dp := make([][]int, m+1)
    	for i := range dp {
    		dp[i] = make([]int, n+1)
    		for j := range dp[i] {
    			dp[i][j] = math.MinInt32
    		}
    	}
    	for i := 1; i <= m; i++ {
    		for j := 1; j <= n; j++ {
    			v := nums1[i-1] * nums2[j-1]
    			dp[i][j] = max(dp[i-1][j], dp[i][j-1])
    			dp[i][j] = max(dp[i][j], max(0, dp[i-1][j-1])+v)
    		}
    	}
    	return dp[m][n]
    }
    
  • impl Solution {
        #[allow(dead_code)]
        pub fn max_dot_product(nums1: Vec<i32>, nums2: Vec<i32>) -> i32 {
            let n = nums1.len();
            let m = nums2.len();
            let mut dp = vec![vec![i32::MIN; m + 1]; n + 1];
    
            // Begin the actual dp process
            for i in 1..=n {
                for j in 1..=m {
                    dp[i][j] = std::cmp::max(
                        std::cmp::max(dp[i - 1][j], dp[i][j - 1]),
                        std::cmp::max(dp[i - 1][j - 1], 0) + nums1[i - 1] * nums2[j - 1]
                    );
                }
            }
    
            dp[n][m]
        }
    }
    
    
  • function maxDotProduct(nums1: number[], nums2: number[]): number {
        const m = nums1.length;
        const n = nums2.length;
        const f = Array.from({ length: m + 1 }, () => Array.from({ length: n + 1 }, () => -Infinity));
        for (let i = 1; i <= m; ++i) {
            for (let j = 1; j <= n; ++j) {
                const v = nums1[i - 1] * nums2[j - 1];
                f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
                f[i][j] = Math.max(f[i][j], Math.max(0, f[i - 1][j - 1]) + v);
            }
        }
        return f[m][n];
    }
    
    

All Problems

All Solutions