Welcome to Subscribe On Youtube

1457. Pseudo-Palindromic Paths in a Binary Tree

Description

Given a binary tree where node values are digits from 1 to 9. A path in the binary tree is said to be pseudo-palindromic if at least one permutation of the node values in the path is a palindrome.

Return the number of pseudo-palindromic paths going from the root node to leaf nodes.

 

Example 1:

Input: root = [2,3,1,3,1,null,1]
Output: 2 
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the red path [2,3,3], the green path [2,1,1], and the path [2,3,1]. Among these paths only red path and green path are pseudo-palindromic paths since the red path [2,3,3] can be rearranged in [3,2,3] (palindrome) and the green path [2,1,1] can be rearranged in [1,2,1] (palindrome).

Example 2:

Input: root = [2,1,1,1,3,null,null,null,null,null,1]
Output: 1 
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the green path [2,1,1], the path [2,1,3,1], and the path [2,1]. Among these paths only the green path is pseudo-palindromic since [2,1,1] can be rearranged in [1,2,1] (palindrome).

Example 3:

Input: root = [9]
Output: 1

 

Constraints:

  • The number of nodes in the tree is in the range [1, 105].
  • 1 <= Node.val <= 9

Solutions

Solution 1: DFS + Bit Manipulation

A path is a pseudo-palindromic path if and only if the number of nodes with odd occurrences in the path is $0$ or $1$.

Since the range of the binary tree node values is from $1$ to $9$, for each path from root to leaf, we can use a $10$-bit binary number $mask$ to represent the occurrence status of the node values in the current path. The $i$th bit of $mask$ is $1$ if the node value $i$ appears an odd number of times in the current path, and $0$ if it appears an even number of times. Therefore, a path is a pseudo-palindromic path if and only if $mask \&(mask - 1) = 0$, where $\&$ represents the bitwise AND operation.

Based on the above analysis, we can use the depth-first search method to calculate the number of paths. We define a function $dfs(root, mask)$, which represents the number of pseudo-palindromic paths starting from the current $root$ node and with the current state $mask$. The answer is $dfs(root, 0)$.

The execution logic of the function $dfs(root, mask)$ is as follows:

If $root$ is null, return $0$;

Otherwise, let $mask = mask \oplus 2^{root.val}$, where $\oplus$ represents the bitwise XOR operation.

If $root$ is a leaf node, return $1$ if $mask \&(mask - 1) = 0$, otherwise return $0$;

If $root$ is not a leaf node, return $dfs(root.left, mask) + dfs(root.right, mask)$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.

  • /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode() {}
     *     TreeNode(int val) { this.val = val; }
     *     TreeNode(int val, TreeNode left, TreeNode right) {
     *         this.val = val;
     *         this.left = left;
     *         this.right = right;
     *     }
     * }
     */
    class Solution {
        public int pseudoPalindromicPaths(TreeNode root) {
            return dfs(root, 0);
        }
    
        private int dfs(TreeNode root, int mask) {
            if (root == null) {
                return 0;
            }
            mask ^= 1 << root.val;
            if (root.left == null && root.right == null) {
                return (mask & (mask - 1)) == 0 ? 1 : 0;
            }
            return dfs(root.left, mask) + dfs(root.right, mask);
        }
    }
    
  • /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
     *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
     *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
     * };
     */
    class Solution {
    public:
        int pseudoPalindromicPaths(TreeNode* root) {
            function<int(TreeNode*, int)> dfs = [&](TreeNode* root, int mask) {
                if (!root) {
                    return 0;
                }
                mask ^= 1 << root->val;
                if (!root->left && !root->right) {
                    return (mask & (mask - 1)) == 0 ? 1 : 0;
                }
                return dfs(root->left, mask) + dfs(root->right, mask);
            };
            return dfs(root, 0);
        }
    };
    
  • # Definition for a binary tree node.
    # class TreeNode:
    #     def __init__(self, val=0, left=None, right=None):
    #         self.val = val
    #         self.left = left
    #         self.right = right
    class Solution:
        def pseudoPalindromicPaths(self, root: Optional[TreeNode]) -> int:
            def dfs(root: Optional[TreeNode], mask: int):
                if root is None:
                    return 0
                mask ^= 1 << root.val
                if root.left is None and root.right is None:
                    return int((mask & (mask - 1)) == 0)
                return dfs(root.left, mask) + dfs(root.right, mask)
    
            return dfs(root, 0)
    
    
  • /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func pseudoPalindromicPaths(root *TreeNode) int {
    	var dfs func(*TreeNode, int) int
    	dfs = func(root *TreeNode, mask int) int {
    		if root == nil {
    			return 0
    		}
    		mask ^= 1 << root.Val
    		if root.Left == nil && root.Right == nil {
    			if mask&(mask-1) == 0 {
    				return 1
    			}
    			return 0
    		}
    		return dfs(root.Left, mask) + dfs(root.Right, mask)
    	}
    	return dfs(root, 0)
    }
    
  • /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     val: number
     *     left: TreeNode | null
     *     right: TreeNode | null
     *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
     *         this.val = (val===undefined ? 0 : val)
     *         this.left = (left===undefined ? null : left)
     *         this.right = (right===undefined ? null : right)
     *     }
     * }
     */
    
    function pseudoPalindromicPaths(root: TreeNode | null): number {
        const dfs = (root: TreeNode | null, mask: number): number => {
            if (!root) {
                return 0;
            }
            mask ^= 1 << root.val;
            if (!root.left && !root.right) {
                return (mask & (mask - 1)) === 0 ? 1 : 0;
            }
            return dfs(root.left, mask) + dfs(root.right, mask);
        };
        return dfs(root, 0);
    }
    
    
  • // Definition for a binary tree node.
    // #[derive(Debug, PartialEq, Eq)]
    // pub struct TreeNode {
    //   pub val: i32,
    //   pub left: Option<Rc<RefCell<TreeNode>>>,
    //   pub right: Option<Rc<RefCell<TreeNode>>>,
    // }
    //
    // impl TreeNode {
    //   #[inline]
    //   pub fn new(val: i32) -> Self {
    //     TreeNode {
    //       val,
    //       left: None,
    //       right: None
    //     }
    //   }
    // }
    use std::rc::Rc;
    use std::cell::RefCell;
    
    impl Solution {
        pub fn pseudo_palindromic_paths(root: Option<Rc<RefCell<TreeNode>>>) -> i32 {
            fn dfs(root: Option<Rc<RefCell<TreeNode>>>, mask: i32) -> i32 {
                if let Some(node) = root {
                    let mut mask = mask;
                    let val = node.borrow().val;
                    mask ^= 1 << val;
    
                    if node.borrow().left.is_none() && node.borrow().right.is_none() {
                        return if (mask & (mask - 1)) == 0 { 1 } else { 0 };
                    }
    
                    return (
                        dfs(node.borrow().left.clone(), mask) + dfs(node.borrow().right.clone(), mask)
                    );
                }
                0
            }
    
            dfs(root, 0)
        }
    }
    
    

All Problems

All Solutions