Welcome to Subscribe On Youtube
1391. Check if There is a Valid Path in a Grid
Description
You are given an m x n
grid
. Each cell of grid
represents a street. The street of grid[i][j]
can be:
1
which means a street connecting the left cell and the right cell.2
which means a street connecting the upper cell and the lower cell.3
which means a street connecting the left cell and the lower cell.4
which means a street connecting the right cell and the lower cell.5
which means a street connecting the left cell and the upper cell.6
which means a street connecting the right cell and the upper cell.
You will initially start at the street of the upper-left cell (0, 0)
. A valid path in the grid is a path that starts from the upper left cell (0, 0)
and ends at the bottom-right cell (m - 1, n - 1)
. The path should only follow the streets.
Notice that you are not allowed to change any street.
Return true
if there is a valid path in the grid or false
otherwise.
Example 1:
Input: grid = [[2,4,3],[6,5,2]] Output: true Explanation: As shown you can start at cell (0, 0) and visit all the cells of the grid to reach (m - 1, n - 1).
Example 2:
Input: grid = [[1,2,1],[1,2,1]] Output: false Explanation: As shown you the street at cell (0, 0) is not connected with any street of any other cell and you will get stuck at cell (0, 0)
Example 3:
Input: grid = [[1,1,2]] Output: false Explanation: You will get stuck at cell (0, 1) and you cannot reach cell (0, 2).
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
1 <= grid[i][j] <= 6
Solutions
Union find.
-
class Solution { private int[] p; private int[][] grid; private int m; private int n; public boolean hasValidPath(int[][] grid) { this.grid = grid; m = grid.length; n = grid[0].length; p = new int[m * n]; for (int i = 0; i < p.length; ++i) { p[i] = i; } for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int e = grid[i][j]; if (e == 1) { left(i, j); right(i, j); } else if (e == 2) { up(i, j); down(i, j); } else if (e == 3) { left(i, j); down(i, j); } else if (e == 4) { right(i, j); down(i, j); } else if (e == 5) { left(i, j); up(i, j); } else { right(i, j); up(i, j); } } } return find(0) == find(m * n - 1); } private int find(int x) { if (p[x] != x) { p[x] = find(p[x]); } return p[x]; } private void left(int i, int j) { if (j > 0 && (grid[i][j - 1] == 1 || grid[i][j - 1] == 4 || grid[i][j - 1] == 6)) { p[find(i * n + j)] = find(i * n + j - 1); } } private void right(int i, int j) { if (j < n - 1 && (grid[i][j + 1] == 1 || grid[i][j + 1] == 3 || grid[i][j + 1] == 5)) { p[find(i * n + j)] = find(i * n + j + 1); } } private void up(int i, int j) { if (i > 0 && (grid[i - 1][j] == 2 || grid[i - 1][j] == 3 || grid[i - 1][j] == 4)) { p[find(i * n + j)] = find((i - 1) * n + j); } } private void down(int i, int j) { if (i < m - 1 && (grid[i + 1][j] == 2 || grid[i + 1][j] == 5 || grid[i + 1][j] == 6)) { p[find(i * n + j)] = find((i + 1) * n + j); } } }
-
class Solution { public: vector<int> p; bool hasValidPath(vector<vector<int>>& grid) { int m = grid.size(); int n = grid[0].size(); p.resize(m * n); for (int i = 0; i < p.size(); ++i) p[i] = i; auto left = [&](int i, int j) { if (j > 0 && (grid[i][j - 1] == 1 || grid[i][j - 1] == 4 || grid[i][j - 1] == 6)) { p[find(i * n + j)] = find(i * n + j - 1); } }; auto right = [&](int i, int j) { if (j < n - 1 && (grid[i][j + 1] == 1 || grid[i][j + 1] == 3 || grid[i][j + 1] == 5)) { p[find(i * n + j)] = find(i * n + j + 1); } }; auto up = [&](int i, int j) { if (i > 0 && (grid[i - 1][j] == 2 || grid[i - 1][j] == 3 || grid[i - 1][j] == 4)) { p[find(i * n + j)] = find((i - 1) * n + j); } }; auto down = [&](int i, int j) { if (i < m - 1 && (grid[i + 1][j] == 2 || grid[i + 1][j] == 5 || grid[i + 1][j] == 6)) { p[find(i * n + j)] = find((i + 1) * n + j); } }; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int e = grid[i][j]; if (e == 1) { left(i, j); right(i, j); } else if (e == 2) { up(i, j); down(i, j); } else if (e == 3) { left(i, j); down(i, j); } else if (e == 4) { right(i, j); down(i, j); } else if (e == 5) { left(i, j); up(i, j); } else { right(i, j); up(i, j); } } } return find(0) == find(m * n - 1); } int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } };
-
class Solution: def hasValidPath(self, grid: List[List[int]]) -> bool: m, n = len(grid), len(grid[0]) p = list(range(m * n)) def find(x): if p[x] != x: p[x] = find(p[x]) return p[x] def left(i, j): if j > 0 and grid[i][j - 1] in (1, 4, 6): p[find(i * n + j)] = find(i * n + j - 1) def right(i, j): if j < n - 1 and grid[i][j + 1] in (1, 3, 5): p[find(i * n + j)] = find(i * n + j + 1) def up(i, j): if i > 0 and grid[i - 1][j] in (2, 3, 4): p[find(i * n + j)] = find((i - 1) * n + j) def down(i, j): if i < m - 1 and grid[i + 1][j] in (2, 5, 6): p[find(i * n + j)] = find((i + 1) * n + j) for i in range(m): for j in range(n): e = grid[i][j] if e == 1: left(i, j) right(i, j) elif e == 2: up(i, j) down(i, j) elif e == 3: left(i, j) down(i, j) elif e == 4: right(i, j) down(i, j) elif e == 5: left(i, j) up(i, j) else: right(i, j) up(i, j) return find(0) == find(m * n - 1)
-
func hasValidPath(grid [][]int) bool { m, n := len(grid), len(grid[0]) p := make([]int, m*n) for i := range p { p[i] = i } var find func(x int) int find = func(x int) int { if p[x] != x { p[x] = find(p[x]) } return p[x] } left := func(i, j int) { if j > 0 && (grid[i][j-1] == 1 || grid[i][j-1] == 4 || grid[i][j-1] == 6) { p[find(i*n+j)] = find(i*n + j - 1) } } right := func(i, j int) { if j < n-1 && (grid[i][j+1] == 1 || grid[i][j+1] == 3 || grid[i][j+1] == 5) { p[find(i*n+j)] = find(i*n + j + 1) } } up := func(i, j int) { if i > 0 && (grid[i-1][j] == 2 || grid[i-1][j] == 3 || grid[i-1][j] == 4) { p[find(i*n+j)] = find((i-1)*n + j) } } down := func(i, j int) { if i < m-1 && (grid[i+1][j] == 2 || grid[i+1][j] == 5 || grid[i+1][j] == 6) { p[find(i*n+j)] = find((i+1)*n + j) } } for i, row := range grid { for j, e := range row { if e == 1 { left(i, j) right(i, j) } else if e == 2 { up(i, j) down(i, j) } else if e == 3 { left(i, j) down(i, j) } else if e == 4 { right(i, j) down(i, j) } else if e == 5 { left(i, j) up(i, j) } else { right(i, j) up(i, j) } } } return find(0) == find(m*n-1) }