Welcome to Subscribe On Youtube

1318. Minimum Flips to Make a OR b Equal to c

Description

Given 3 positives numbers a, b and c. Return the minimum flips required in some bits of a and b to make ( a OR b == c ). (bitwise OR operation).
Flip operation consists of change any single bit 1 to 0 or change the bit 0 to 1 in their binary representation.

 

Example 1:

Input: a = 2, b = 6, c = 5
Output: 3
Explanation: After flips a = 1 , b = 4 , c = 5 such that (a OR b == c)

Example 2:

Input: a = 4, b = 2, c = 7
Output: 1

Example 3:

Input: a = 1, b = 2, c = 3
Output: 0

 

Constraints:

  • 1 <= a <= 10^9
  • 1 <= b <= 10^9
  • 1 <= c <= 10^9

Solutions

  • class Solution {
        public int minFlips(int a, int b, int c) {
            int ans = 0;
            for (int i = 0; i < 30; ++i) {
                int x = a >> i & 1, y = b >> i & 1, z = c >> i & 1;
                if ((x | y) != z) {
                    ans += x == 1 && y == 1 ? 2 : 1;
                }
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int minFlips(int a, int b, int c) {
            int ans = 0;
            for (int i = 0; i < 30; ++i) {
                int x = a >> i & 1, y = b >> i & 1, z = c >> i & 1;
                if ((x | y) != z) {
                    ans += x == 1 && y == 1 ? 2 : 1;
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def minFlips(self, a: int, b: int, c: int) -> int:
            ans = 0
            for i in range(30):
                x, y, z = a >> i & 1, b >> i & 1, c >> i & 1
                if x | y != z:
                    ans += 2 if x == 1 and y == 1 else 1
            return ans
    
    
  • func minFlips(a int, b int, c int) (ans int) {
    	for i := 0; i < 30; i++ {
    		x, y, z := a>>i&1, b>>i&1, c>>i&1
    		if (x | y) != z {
    			if x == 1 && y == 1 {
    				ans += 2
    			} else {
    				ans++
    			}
    		}
    	}
    	return
    }
    
  • function minFlips(a: number, b: number, c: number): number {
        let ans = 0;
        for (let i = 0; i < 32; ++i) {
            const [x, y, z] = [(a >> i) & 1, (b >> i) & 1, (c >> i) & 1];
            ans += z === 0 ? x + y : x + y === 0 ? 1 : 0;
        }
        return ans;
    }
    
    

All Problems

All Solutions