Welcome to Subscribe On Youtube

1317. Convert Integer to the Sum of Two No-Zero Integers

Description

No-Zero integer is a positive integer that does not contain any 0 in its decimal representation.

Given an integer n, return a list of two integers [a, b] where:

  • a and b are No-Zero integers.
  • a + b = n

The test cases are generated so that there is at least one valid solution. If there are many valid solutions, you can return any of them.

 

Example 1:

Input: n = 2
Output: [1,1]
Explanation: Let a = 1 and b = 1.
Both a and b are no-zero integers, and a + b = 2 = n.

Example 2:

Input: n = 11
Output: [2,9]
Explanation: Let a = 2 and b = 9.
Both a and b are no-zero integers, and a + b = 9 = n.
Note that there are other valid answers as [8, 3] that can be accepted.

 

Constraints:

  • 2 <= n <= 104

Solutions

  • class Solution {
        public int[] getNoZeroIntegers(int n) {
            for (int a = 1;; ++a) {
                int b = n - a;
                if (!(a + "" + b).contains("0")) {
                    return new int[] {a, b};
                }
            }
        }
    }
    
  • class Solution {
    public:
        vector<int> getNoZeroIntegers(int n) {
            for (int a = 1;; ++a) {
                int b = n - a;
                if ((to_string(a) + to_string(b)).find('0') == -1) {
                    return {a, b};
                }
            }
        }
    };
    
  • class Solution:
        def getNoZeroIntegers(self, n: int) -> List[int]:
            for a in range(1, n):
                b = n - a
                if "0" not in str(a) + str(b):
                    return [a, b]
    
    
  • func getNoZeroIntegers(n int) []int {
    	for a := 1; ; a++ {
    		b := n - a
    		if !strings.Contains(strconv.Itoa(a)+strconv.Itoa(b), "0") {
    			return []int{a, b}
    		}
    	}
    }
    
  • function getNoZeroIntegers(n: number): number[] {
        for (let a = 1; ; ++a) {
            const b = n - a;
            if (!`${a}${b}`.includes('0')) {
                return [a, b];
            }
        }
    }
    
    

All Problems

All Solutions