Welcome to Subscribe On Youtube
1283. Find the Smallest Divisor Given a Threshold
Description
Given an array of integers nums
and an integer threshold
, we will choose a positive integer divisor
, divide all the array by it, and sum the division's result. Find the smallest divisor
such that the result mentioned above is less than or equal to threshold
.
Each result of the division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3
and 10/2 = 5
).
The test cases are generated so that there will be an answer.
Example 1:
Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum of 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2).
Example 2:
Input: nums = [44,22,33,11,1], threshold = 5 Output: 44
Constraints:
1 <= nums.length <= 5 * 104
1 <= nums[i] <= 106
nums.length <= threshold <= 106
Solutions
Solution 1: Binary Search
Notice that for number $v$, if the sum of results of dividing each number in $nums$ by $v$ is less than or equal to $threshold$, then all values greater than $v$ satisfy the condition. There is a monotonicity, so we can use binary search to find the smallest $v$ that satisfies the condition.
We define the left boundary of the binary search $l=1$, $r=\max(nums)$. Each time we take $mid=(l+r)/2$, calculate the sum of the results of dividing each number in $nums$ by $mid$ $s$, if $s$ is less than or equal to $threshold$, then it means that $mid$ satisfies the condition, we will update $r$ to $mid$, otherwise we will update $l$ to $mid+1$.
Finally, return $l$.
The time complexity is $O(n \times \log M)$, where $n$ is the length of the array $nums$ and $M$ is the maximum value in the array $nums$. The space complexity is $O(1)$.
-
class Solution { public int smallestDivisor(int[] nums, int threshold) { int l = 1, r = 1000000; while (l < r) { int mid = (l + r) >> 1; int s = 0; for (int x : nums) { s += (x + mid - 1) / mid; } if (s <= threshold) { r = mid; } else { l = mid + 1; } } return l; } }
-
class Solution { public: int smallestDivisor(vector<int>& nums, int threshold) { int l = 1; int r = *max_element(nums.begin(), nums.end()); while (l < r) { int mid = (l + r) >> 1; int s = 0; for (int x : nums) { s += (x + mid - 1) / mid; } if (s <= threshold) { r = mid; } else { l = mid + 1; } } return l; } };
-
class Solution: def smallestDivisor(self, nums: List[int], threshold: int) -> int: l, r = 1, max(nums) while l < r: mid = (l + r) >> 1 if sum((x + mid - 1) // mid for x in nums) <= threshold: r = mid else: l = mid + 1 return l
-
func smallestDivisor(nums []int, threshold int) int { return sort.Search(1000000, func(v int) bool { v++ s := 0 for _, x := range nums { s += (x + v - 1) / v } return s <= threshold }) + 1 }
-
function smallestDivisor(nums: number[], threshold: number): number { let l = 1; let r = Math.max(...nums); while (l < r) { const mid = (l + r) >> 1; let s = 0; for (const x of nums) { s += Math.ceil(x / mid); } if (s <= threshold) { r = mid; } else { l = mid + 1; } } return l; }
-
/** * @param {number[]} nums * @param {number} threshold * @return {number} */ var smallestDivisor = function (nums, threshold) { let l = 1; let r = Math.max(...nums); while (l < r) { const mid = (l + r) >> 1; let s = 0; for (const x of nums) { s += Math.ceil(x / mid); } if (s <= threshold) { r = mid; } else { l = mid + 1; } } return l; };
-
public class Solution { public int SmallestDivisor(int[] nums, int threshold) { int l = 1; int r = nums.Max(); while (l < r) { int mid = (l + r) >> 1; int s = 0; foreach (int x in nums) { s += (x + mid - 1) / mid; } if (s <= threshold) { r = mid; } else { l = mid + 1; } } return l; } }
-
impl Solution { pub fn smallest_divisor(nums: Vec<i32>, threshold: i32) -> i32 { let mut l = 1; let mut r = *nums.iter().max().unwrap(); while l < r { let mid = (l + r) / 2; let s: i32 = nums.iter().map(|&x| (x + mid - 1) / mid).sum(); if s <= threshold { r = mid; } else { l = mid + 1; } } l } }