Welcome to Subscribe On Youtube
1262. Greatest Sum Divisible by Three
Description
Given an integer array nums
, return the maximum possible sum of elements of the array such that it is divisible by three.
Example 1:
Input: nums = [3,6,5,1,8] Output: 18 Explanation: Pick numbers 3, 6, 1 and 8 their sum is 18 (maximum sum divisible by 3).
Example 2:
Input: nums = [4] Output: 0 Explanation: Since 4 is not divisible by 3, do not pick any number.
Example 3:
Input: nums = [1,2,3,4,4] Output: 12 Explanation: Pick numbers 1, 3, 4 and 4 their sum is 12 (maximum sum divisible by 3).
Constraints:
1 <= nums.length <= 4 * 104
1 <= nums[i] <= 104
Solutions
Solution 1: Dynamic Programming
We define $f[i][j]$ as the maximum sum of several numbers selected from the first $i$ numbers, such that the sum modulo $3$ equals $j$. Initially, $f[0][0]=0$, and the rest are $-\infty$.
For $f[i][j]$, we can consider the state of the $i$th number $x$:
- If we do not select $x$, then $f[i][j]=f[i-1][j]$;
- If we select $x$, then $f[i][j]=f[i-1][(j-x \bmod 3 + 3)\bmod 3]+x$.
Therefore, we can get the state transition equation:
\[f[i][j]=\max\{f[i-1][j],f[i-1][(j-x \bmod 3 + 3)\bmod 3]+x\}\]The final answer is $f[n][0]$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array $nums$.
Note that the value of $f[i][j]$ is only related to $f[i-1][j]$ and $f[i-1][(j-x \bmod 3 + 3)\bmod 3]$, so we can use a rolling array to optimize the space complexity, reducing the space complexity to $O(1)$.
-
class Solution { public int maxSumDivThree(int[] nums) { int n = nums.length; final int inf = 1 << 30; int[][] f = new int[n + 1][3]; f[0][1] = f[0][2] = -inf; for (int i = 1; i <= n; ++i) { int x = nums[i - 1]; for (int j = 0; j < 3; ++j) { f[i][j] = Math.max(f[i - 1][j], f[i - 1][(j - x % 3 + 3) % 3] + x); } } return f[n][0]; } }
-
class Solution { public: int maxSumDivThree(vector<int>& nums) { int n = nums.size(); const int inf = 1 << 30; int f[n + 1][3]; f[0][0] = 0; f[0][1] = f[0][2] = -inf; for (int i = 1; i <= n; ++i) { int x = nums[i - 1]; for (int j = 0; j < 3; ++j) { f[i][j] = max(f[i - 1][j], f[i - 1][(j - x % 3 + 3) % 3] + x); } } return f[n][0]; } };
-
class Solution: def maxSumDivThree(self, nums: List[int]) -> int: n = len(nums) f = [[-inf] * 3 for _ in range(n + 1)] f[0][0] = 0 for i, x in enumerate(nums, 1): for j in range(3): f[i][j] = max(f[i - 1][j], f[i - 1][(j - x) % 3] + x) return f[n][0]
-
func maxSumDivThree(nums []int) int { n := len(nums) const inf = 1 << 30 f := make([][3]int, n+1) f[0] = [3]int{0, -inf, -inf} for i, x := range nums { i++ for j := 0; j < 3; j++ { f[i][j] = max(f[i-1][j], f[i-1][(j-x%3+3)%3]+x) } } return f[n][0] }
-
function maxSumDivThree(nums: number[]): number { const n = nums.length; const inf = 1 << 30; const f: number[][] = Array(n + 1) .fill(0) .map(() => Array(3).fill(-inf)); f[0][0] = 0; for (let i = 1; i <= n; ++i) { const x = nums[i - 1]; for (let j = 0; j < 3; ++j) { f[i][j] = Math.max(f[i - 1][j], f[i - 1][(j - (x % 3) + 3) % 3] + x); } } return f[n][0]; }