Welcome to Subscribe On Youtube
1235. Maximum Profit in Job Scheduling
Description
We have n
jobs, where every job is scheduled to be done from startTime[i]
to endTime[i]
, obtaining a profit of profit[i]
.
You're given the startTime
, endTime
and profit
arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.
If you choose a job that ends at time X
you will be able to start another job that starts at time X
.
Example 1:
Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70] Output: 120 Explanation: The subset chosen is the first and fourth job. Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70.
Example 2:
Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60] Output: 150 Explanation: The subset chosen is the first, fourth and fifth job. Profit obtained 150 = 20 + 70 + 60.
Example 3:
Input: startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4] Output: 6
Constraints:
1 <= startTime.length == endTime.length == profit.length <= 5 * 104
1 <= startTime[i] < endTime[i] <= 109
1 <= profit[i] <= 104
Solutions
Solution 1: Memoization Search + Binary Search
First, we sort the jobs by start time in ascending order, then design a function $dfs(i)$ to represent the maximum profit that can be obtained starting from the $i$-th job. The answer is $dfs(0)$.
The calculation process of function $dfs(i)$ is as follows:
For the $i$-th job, we can choose to do it or not. If we don’t do it, the maximum profit is $dfs(i + 1)$; if we do it, we can use binary search to find the first job that starts after the end time of the $i$-th job, denoted as $j$, then the maximum profit is $profit[i] + dfs(j)$. We take the larger of the two. That is:
\[dfs(i)=\max(dfs(i+1),profit[i]+dfs(j))\]Where $j$ is the smallest index that satisfies $startTime[j] \ge endTime[i]$.
In this process, we can use memoization search to save the answer of each state to avoid repeated calculations.
The time complexity is $O(n \times \log n)$, where $n$ is the number of jobs.
Solution 2: Dynamic Programming + Binary Search
We can also change the memoization search in Solution 1 to dynamic programming.
First, sort the jobs, this time we sort by end time in ascending order, then define $dp[i]$, which represents the maximum profit that can be obtained from the first $i$ jobs. The answer is $dp[n]$. Initialize $dp[0]=0$.
For the $i$-th job, we can choose to do it or not. If we don’t do it, the maximum profit is $dp[i]$; if we do it, we can use binary search to find the last job that ends before the start time of the $i$-th job, denoted as $j$, then the maximum profit is $profit[i] + dp[j]$. We take the larger of the two. That is:
\[dp[i+1] = \max(dp[i], profit[i] + dp[j])\]Where $j$ is the largest index that satisfies $endTime[j] \leq startTime[i]$.
The time complexity is $O(n \times \log n)$, where $n$ is the number of jobs.
-
class Solution { private int[][] jobs; private int[] f; private int n; public int jobScheduling(int[] startTime, int[] endTime, int[] profit) { n = profit.length; jobs = new int[n][3]; for (int i = 0; i < n; ++i) { jobs[i] = new int[] {startTime[i], endTime[i], profit[i]}; } Arrays.sort(jobs, (a, b) -> a[0] - b[0]); f = new int[n]; return dfs(0); } private int dfs(int i) { if (i >= n) { return 0; } if (f[i] != 0) { return f[i]; } int e = jobs[i][1], p = jobs[i][2]; int j = search(jobs, e, i + 1); int ans = Math.max(dfs(i + 1), p + dfs(j)); f[i] = ans; return ans; } private int search(int[][] jobs, int x, int i) { int left = i, right = n; while (left < right) { int mid = (left + right) >> 1; if (jobs[mid][0] >= x) { right = mid; } else { left = mid + 1; } } return left; } }
-
class Solution { public: int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) { int n = profit.size(); vector<tuple<int, int, int>> jobs(n); for (int i = 0; i < n; ++i) jobs[i] = {startTime[i], endTime[i], profit[i]}; sort(jobs.begin(), jobs.end()); vector<int> f(n); function<int(int)> dfs = [&](int i) -> int { if (i >= n) return 0; if (f[i]) return f[i]; auto [_, e, p] = jobs[i]; tuple<int, int, int> t{e, 0, 0}; int j = lower_bound(jobs.begin() + i + 1, jobs.end(), t, [&](auto& l, auto& r) -> bool { return get<0>(l) < get<0>(r); }) - jobs.begin(); int ans = max(dfs(i + 1), p + dfs(j)); f[i] = ans; return ans; }; return dfs(0); } };
-
class Solution: def jobScheduling( self, startTime: List[int], endTime: List[int], profit: List[int] ) -> int: @cache def dfs(i): if i >= n: return 0 _, e, p = jobs[i] j = bisect_left(jobs, e, lo=i + 1, key=lambda x: x[0]) return max(dfs(i + 1), p + dfs(j)) jobs = sorted(zip(startTime, endTime, profit)) n = len(profit) return dfs(0)
-
func jobScheduling(startTime []int, endTime []int, profit []int) int { n := len(profit) type tuple struct{ s, e, p int } jobs := make([]tuple, n) for i, p := range profit { jobs[i] = tuple{startTime[i], endTime[i], p} } sort.Slice(jobs, func(i, j int) bool { return jobs[i].s < jobs[j].s }) f := make([]int, n) var dfs func(int) int dfs = func(i int) int { if i >= n { return 0 } if f[i] != 0 { return f[i] } j := sort.Search(n, func(j int) bool { return jobs[j].s >= jobs[i].e }) ans := max(dfs(i+1), jobs[i].p+dfs(j)) f[i] = ans return ans } return dfs(0) }
-
function jobScheduling(startTime: number[], endTime: number[], profit: number[]): number { const n = startTime.length; const f = new Array(n).fill(0); const idx = new Array(n).fill(0).map((_, i) => i); idx.sort((i, j) => startTime[i] - startTime[j]); const search = (x: number) => { let l = 0; let r = n; while (l < r) { const mid = (l + r) >> 1; if (startTime[idx[mid]] >= x) { r = mid; } else { l = mid + 1; } } return l; }; const dfs = (i: number): number => { if (i >= n) { return 0; } if (f[i] !== 0) { return f[i]; } const j = search(endTime[idx[i]]); return (f[i] = Math.max(dfs(i + 1), dfs(j) + profit[idx[i]])); }; return dfs(0); }
-
class Solution { func binarySearch<T: Comparable>(inputArr: [T], searchItem: T) -> Int? { var lowerIndex = 0 var upperIndex = inputArr.count - 1 while lowerIndex < upperIndex { let currentIndex = (lowerIndex + upperIndex) / 2 if inputArr[currentIndex] <= searchItem { lowerIndex = currentIndex + 1 } else { upperIndex = currentIndex } } if inputArr[upperIndex] <= searchItem { return upperIndex + 1 } return lowerIndex } func jobScheduling(_ startTime: [Int], _ endTime: [Int], _ profit: [Int]) -> Int { let zipList = zip(zip(startTime, endTime), profit) var table: [(startTime: Int, endTime: Int, profit: Int, cumsum: Int)] = [] for ((x, y), z) in zipList { table.append((x, y, z, 0)) } table.sort(by: { $0.endTime < $1.endTime }) let sortedEndTime = endTime.sorted() var profits: [Int] = [0] for iJob in table { let index: Int! = binarySearch(inputArr: sortedEndTime, searchItem: iJob.startTime) if profits.last! < profits[index] + iJob.profit { profits.append(profits[index] + iJob.profit) } else { profits.append(profits.last!) } } return profits.last! } }