Welcome to Subscribe On Youtube
1223. Dice Roll Simulation
Description
A die simulator generates a random number from 1
to 6
for each roll. You introduced a constraint to the generator such that it cannot roll the number i
more than rollMax[i]
(1-indexed) consecutive times.
Given an array of integers rollMax
and an integer n
, return the number of distinct sequences that can be obtained with exact n
rolls. Since the answer may be too large, return it modulo 109 + 7
.
Two sequences are considered different if at least one element differs from each other.
Example 1:
Input: n = 2, rollMax = [1,1,2,2,2,3] Output: 34 Explanation: There will be 2 rolls of die, if there are no constraints on the die, there are 6 * 6 = 36 possible combinations. In this case, looking at rollMax array, the numbers 1 and 2 appear at most once consecutively, therefore sequences (1,1) and (2,2) cannot occur, so the final answer is 36-2 = 34.
Example 2:
Input: n = 2, rollMax = [1,1,1,1,1,1] Output: 30
Example 3:
Input: n = 3, rollMax = [1,1,1,2,2,3] Output: 181
Constraints:
1 <= n <= 5000
rollMax.length == 6
1 <= rollMax[i] <= 15
Solutions
Solution 1: Memoization Search
We can design a function
The calculation process of the function
- If
, it means thati≥n dice have been rolled, returnn .1 - Otherwise, we enumerate the number
rolled next time. Ifk , we can directly rollk≠j , and the number of consecutive timesk is rolled will be reset toj , so the number of schemes is1 . Ifdfs(i+1,k,1) , we need to judge whetherk=j is less thanx . If it is less, we can continue to rollrollMax[j−1] , and the number of consecutive timesj is rolled will increase byj , so the number of schemes is1 . Finally, add all the scheme numbers to get the value ofdfs(i+1,j,x+1) . Note that the answer may be very large, so we need to take the modulus ofdfs(i,j,x) .109+7
During the process, we can use memoization search to avoid repeated calculations.
The time complexity is
Solution 2: Dynamic Programming
We can change the memoization search in Solution 1 to dynamic programming.
Define
We enumerate the last dice roll as
- If
, we can directly rollk≠j , and the number of consecutive timesk is rolled will be reset toj . Therefore, the number of schemes1 will increase byf[i][k][1] .f[i−1][j][x] - If
, we need to judge whetherk=j is less than or equal tox+1 . If it is less than or equal to, we can continue to rollrollMax[j−1] , and the number of consecutive timesj is rolled will increase byj . Therefore, the number of schemes1 will increase byf[i][j][x+1] .f[i−1][j][x]
The final answer is the sum of all
The time complexity is
-
class Solution { private Integer[][][] f; private int[] rollMax; public int dieSimulator(int n, int[] rollMax) { f = new Integer[n][7][16]; this.rollMax = rollMax; return dfs(0, 0, 0); } private int dfs(int i, int j, int x) { if (i >= f.length) { return 1; } if (f[i][j][x] != null) { return f[i][j][x]; } long ans = 0; for (int k = 1; k <= 6; ++k) { if (k != j) { ans += dfs(i + 1, k, 1); } else if (x < rollMax[j - 1]) { ans += dfs(i + 1, j, x + 1); } } ans %= 1000000007; return f[i][j][x] = (int) ans; } }
-
class Solution { public: int dieSimulator(int n, vector<int>& rollMax) { int f[n][7][16]; memset(f, 0, sizeof f); const int mod = 1e9 + 7; function<int(int, int, int)> dfs = [&](int i, int j, int x) -> int { if (i >= n) { return 1; } if (f[i][j][x]) { return f[i][j][x]; } long ans = 0; for (int k = 1; k <= 6; ++k) { if (k != j) { ans += dfs(i + 1, k, 1); } else if (x < rollMax[j - 1]) { ans += dfs(i + 1, j, x + 1); } } ans %= mod; return f[i][j][x] = ans; }; return dfs(0, 0, 0); } };
-
class Solution: def dieSimulator(self, n: int, rollMax: List[int]) -> int: @cache def dfs(i, j, x): if i >= n: return 1 ans = 0 for k in range(1, 7): if k != j: ans += dfs(i + 1, k, 1) elif x < rollMax[j - 1]: ans += dfs(i + 1, j, x + 1) return ans % (10**9 + 7) return dfs(0, 0, 0)
-
func dieSimulator(n int, rollMax []int) int { f := make([][7][16]int, n) const mod = 1e9 + 7 var dfs func(i, j, x int) int dfs = func(i, j, x int) int { if i >= n { return 1 } if f[i][j][x] != 0 { return f[i][j][x] } ans := 0 for k := 1; k <= 6; k++ { if k != j { ans += dfs(i+1, k, 1) } else if x < rollMax[j-1] { ans += dfs(i+1, j, x+1) } } f[i][j][x] = ans % mod return f[i][j][x] } return dfs(0, 0, 0) }