Welcome to Subscribe On Youtube
1208. Get Equal Substrings Within Budget
Description
You are given two strings s
and t
of the same length and an integer maxCost
.
You want to change s
to t
. Changing the ith
character of s
to ith
character of t
costs |s[i] - t[i]|
(i.e., the absolute difference between the ASCII values of the characters).
Return the maximum length of a substring of s
that can be changed to be the same as the corresponding substring of t
with a cost less than or equal to maxCost
. If there is no substring from s
that can be changed to its corresponding substring from t
, return 0
.
Example 1:
Input: s = "abcd", t = "bcdf", maxCost = 3 Output: 3 Explanation: "abc" of s can change to "bcd". That costs 3, so the maximum length is 3.
Example 2:
Input: s = "abcd", t = "cdef", maxCost = 3 Output: 1 Explanation: Each character in s costs 2 to change to character in t, so the maximum length is 1.
Example 3:
Input: s = "abcd", t = "acde", maxCost = 0 Output: 1 Explanation: You cannot make any change, so the maximum length is 1.
Constraints:
1 <= s.length <= 105
t.length == s.length
0 <= maxCost <= 106
s
andt
consist of only lowercase English letters.
Solutions
Solution 1: Prefix Sum + Binary Search
We can create an array $f$ of length $n + 1$, where $f[i]$ represents the sum of the absolute differences of ASCII values between the first $i$ characters of string $s$ and the first $i$ characters of string $t$. Thus, we can calculate the sum of the absolute differences of ASCII values from the $i$-th character to the $j$-th character of string $s$ by $f[j + 1] - f[i]$, where $0 \leq i \leq j < n$.
Note that the length has monotonicity, i.e., if there exists a substring of length $x$ that satisfies the condition, then a substring of length $x - 1$ must also satisfy the condition. Therefore, we can use binary search to find the maximum length.
We define a function $check(x)$, which indicates whether there exists a substring of length $x$ that satisfies the condition. In this function, we only need to enumerate all substrings of length $x$ and check whether they satisfy the condition. If there exists a substring that satisfies the condition, the function returns true
, otherwise it returns false
.
Next, we define the left boundary $l$ of binary search as $0$ and the right boundary $r$ as $n$. In each step, we let $mid = \lfloor \frac{l + r + 1}{2} \rfloor$. If the return value of $check(mid)$ is true
, we update the left boundary to $mid$, otherwise we update the right boundary to $mid - 1$. After the binary search, the left boundary we get is the answer.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of string $s$.
Solution 2: Two Pointers
We can maintain two pointers $j$ and $i$, initially $i = j = 0$; maintain a variable $sum$, representing the sum of the absolute differences of ASCII values in the index interval $[i,..j]$. In each step, we move $i$ to the right by one position, then update $sum = sum + | s[i] - t[i] | $. If $sum \gt maxCost$, then we move the pointer $j$ to the right in a loop, and continuously reduce the value of $sum$ during the moving process until $sum \leq maxCost$. Then we update the answer, i.e., $ans = \max(ans, i - j + 1)$. |
Finally, return the answer.
The time complexity is $O(n)$, and the space complexity is $O(1)$. Here, $n$ is the length of string $s$.
-
class Solution { private int maxCost; private int[] f; private int n; public int equalSubstring(String s, String t, int maxCost) { n = s.length(); f = new int[n + 1]; this.maxCost = maxCost; for (int i = 0; i < n; ++i) { int x = Math.abs(s.charAt(i) - t.charAt(i)); f[i + 1] = f[i] + x; } int l = 0, r = n; while (l < r) { int mid = (l + r + 1) >>> 1; if (check(mid)) { l = mid; } else { r = mid - 1; } } return l; } private boolean check(int x) { for (int i = 0; i + x - 1 < n; ++i) { int j = i + x - 1; if (f[j + 1] - f[i] <= maxCost) { return true; } } return false; } }
-
class Solution { public: int equalSubstring(string s, string t, int maxCost) { int n = s.size(); int f[n + 1]; f[0] = 0; for (int i = 0; i < n; ++i) { f[i + 1] = f[i] + abs(s[i] - t[i]); } auto check = [&](int x) -> bool { for (int i = 0; i + x - 1 < n; ++i) { int j = i + x - 1; if (f[j + 1] - f[i] <= maxCost) { return true; } } return false; }; int l = 0, r = n; while (l < r) { int mid = (l + r + 1) >> 1; if (check(mid)) { l = mid; } else { r = mid - 1; } } return l; } };
-
class Solution: def equalSubstring(self, s: str, t: str, maxCost: int) -> int: def check(x): for i in range(n): j = i + mid - 1 if j < n and f[j + 1] - f[i] <= maxCost: return True return False n = len(s) f = list(accumulate((abs(ord(a) - ord(b)) for a, b in zip(s, t)), initial=0)) l, r = 0, n while l < r: mid = (l + r + 1) >> 1 if check(mid): l = mid else: r = mid - 1 return l
-
func equalSubstring(s string, t string, maxCost int) int { n := len(s) f := make([]int, n+1) for i, a := range s { f[i+1] = f[i] + abs(int(a)-int(t[i])) } check := func(x int) bool { for i := 0; i+x-1 < n; i++ { if f[i+x]-f[i] <= maxCost { return true } } return false } l, r := 0, n for l < r { mid := (l + r + 1) >> 1 if check(mid) { l = mid } else { r = mid - 1 } } return l } func abs(x int) int { if x < 0 { return -x } return x }
-
function equalSubstring(s: string, t: string, maxCost: number): number { const n = s.length; const f = Array(n + 1).fill(0); for (let i = 0; i < n; i++) { f[i + 1] = f[i] + Math.abs(s.charCodeAt(i) - t.charCodeAt(i)); } const check = (x: number): boolean => { for (let i = 0; i + x - 1 < n; i++) { if (f[i + x] - f[i] <= maxCost) { return true; } } return false; }; let l = 0, r = n; while (l < r) { const mid = (l + r + 1) >> 1; if (check(mid)) { l = mid; } else { r = mid - 1; } } return l; }