Welcome to Subscribe On Youtube

1201. Ugly Number III

Description

An ugly number is a positive integer that is divisible by a, b, or c.

Given four integers n, a, b, and c, return the nth ugly number.

 

Example 1:

Input: n = 3, a = 2, b = 3, c = 5
Output: 4
Explanation: The ugly numbers are 2, 3, 4, 5, 6, 8, 9, 10... The 3rd is 4.

Example 2:

Input: n = 4, a = 2, b = 3, c = 4
Output: 6
Explanation: The ugly numbers are 2, 3, 4, 6, 8, 9, 10, 12... The 4th is 6.

Example 3:

Input: n = 5, a = 2, b = 11, c = 13
Output: 10
Explanation: The ugly numbers are 2, 4, 6, 8, 10, 11, 12, 13... The 5th is 10.

 

Constraints:

  • 1 <= n, a, b, c <= 109
  • 1 <= a * b * c <= 1018
  • It is guaranteed that the result will be in range [1, 2 * 109].

Solutions

Solution 1: Binary Search + Inclusion-Exclusion Principle

We can transform the problem into: find the smallest positive integer $x$ such that the number of ugly numbers less than or equal to $x$ is exactly $n$.

For a positive integer $x$, there are $\left\lfloor \frac{x}{a} \right\rfloor$ numbers divisible by $a$, $\left\lfloor \frac{x}{b} \right\rfloor$ numbers divisible by $b$, $\left\lfloor \frac{x}{c} \right\rfloor$ numbers divisible by $c$, $\left\lfloor \frac{x}{lcm(a, b)} \right\rfloor$ numbers divisible by both $a$ and $b$, $\left\lfloor \frac{x}{lcm(a, c)} \right\rfloor$ numbers divisible by both $a$ and $c$, $\left\lfloor \frac{x}{lcm(b, c)} \right\rfloor$ numbers divisible by both $b$ and $c$, and $\left\lfloor \frac{x}{lcm(a, b, c)} \right\rfloor$ numbers divisible by $a$, $b$, and $c$ at the same time. According to the inclusion-exclusion principle, the number of ugly numbers less than or equal to $x$ is:

\[\left\lfloor \frac{x}{a} \right\rfloor + \left\lfloor \frac{x}{b} \right\rfloor + \left\lfloor \frac{x}{c} \right\rfloor - \left\lfloor \frac{x}{lcm(a, b)} \right\rfloor - \left\lfloor \frac{x}{lcm(a, c)} \right\rfloor - \left\lfloor \frac{x}{lcm(b, c)} \right\rfloor + \left\lfloor \frac{x}{lcm(a, b, c)} \right\rfloor\]

We can use binary search to find the smallest positive integer $x$ such that the number of ugly numbers less than or equal to $x$ is exactly $n$.

Define the left boundary of binary search as $l=1$ and the right boundary as $r=2 \times 10^9$, where $2 \times 10^9$ is the maximum value given by the problem. In each step of binary search, we find the middle number $mid$. If the number of ugly numbers less than or equal to $mid$ is greater than or equal to $n$, it means that the smallest positive integer $x$ falls in the interval $[l,mid]$, otherwise it falls in the interval $[mid+1,r]$. During the binary search process, we need to continuously update the number of ugly numbers less than or equal to $mid$ until we find the smallest positive integer $x$.

The time complexity is $O(\log m)$, where $m = 2 \times 10^9$. The space complexity is $O(1)$.

  • class Solution {
        public int nthUglyNumber(int n, int a, int b, int c) {
            long ab = lcm(a, b);
            long bc = lcm(b, c);
            long ac = lcm(a, c);
            long abc = lcm(ab, c);
            long l = 1, r = 2000000000;
            while (l < r) {
                long mid = (l + r) >> 1;
                if (mid / a + mid / b + mid / c - mid / ab - mid / bc - mid / ac + mid / abc >= n) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return (int) l;
        }
    
        private long gcd(long a, long b) {
            return b == 0 ? a : gcd(b, a % b);
        }
    
        private long lcm(long a, long b) {
            return a * b / gcd(a, b);
        }
    }
    
  • class Solution {
    public:
        int nthUglyNumber(int n, int a, int b, int c) {
            long long ab = lcm(a, b);
            long long bc = lcm(b, c);
            long long ac = lcm(a, c);
            long long abc = lcm(ab, c);
            long long l = 1, r = 2000000000;
            while (l < r) {
                long long mid = (l + r) >> 1;
                if (mid / a + mid / b + mid / c - mid / ab - mid / bc - mid / ac + mid / abc >= n) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return l;
        }
    
        long long lcm(long long a, long long b) {
            return a * b / gcd(a, b);
        }
    
        long long gcd(long long a, long long b) {
            return b == 0 ? a : gcd(b, a % b);
        }
    };
    
  • class Solution:
        def nthUglyNumber(self, n: int, a: int, b: int, c: int) -> int:
            ab = lcm(a, b)
            bc = lcm(b, c)
            ac = lcm(a, c)
            abc = lcm(a, b, c)
            l, r = 1, 2 * 10**9
            while l < r:
                mid = (l + r) >> 1
                if (
                    mid // a
                    + mid // b
                    + mid // c
                    - mid // ab
                    - mid // bc
                    - mid // ac
                    + mid // abc
                    >= n
                ):
                    r = mid
                else:
                    l = mid + 1
            return l
    
    
  • func nthUglyNumber(n int, a int, b int, c int) int {
    	ab, bc, ac := lcm(a, b), lcm(b, c), lcm(a, c)
    	abc := lcm(ab, c)
    	var l, r int = 1, 2e9
    	for l < r {
    		mid := (l + r) >> 1
    		if mid/a+mid/b+mid/c-mid/ab-mid/bc-mid/ac+mid/abc >= n {
    			r = mid
    		} else {
    			l = mid + 1
    		}
    	}
    	return l
    }
    
    func gcd(a, b int) int {
    	if b == 0 {
    		return a
    	}
    	return gcd(b, a%b)
    }
    
    func lcm(a, b int) int {
    	return a * b / gcd(a, b)
    }
    
  • function nthUglyNumber(n: number, a: number, b: number, c: number): number {
        const ab = lcm(BigInt(a), BigInt(b));
        const bc = lcm(BigInt(b), BigInt(c));
        const ac = lcm(BigInt(a), BigInt(c));
        const abc = lcm(BigInt(a), bc);
        let l = 1n;
        let r = BigInt(2e9);
        while (l < r) {
            const mid = (l + r) >> 1n;
            const count =
                mid / BigInt(a) +
                mid / BigInt(b) +
                mid / BigInt(c) -
                mid / ab -
                mid / bc -
                mid / ac +
                mid / abc;
            if (count >= BigInt(n)) {
                r = mid;
            } else {
                l = mid + 1n;
            }
        }
        return Number(l);
    }
    
    function gcd(a: bigint, b: bigint): bigint {
        return b === 0n ? a : gcd(b, a % b);
    }
    
    function lcm(a: bigint, b: bigint): bigint {
        return (a * b) / gcd(a, b);
    }
    
    

All Problems

All Solutions